These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 38058105)
1. Synergistically Stabilizing Zinc Anodes by Molybdenum Dioxide Coating and Tween 80 Electrolyte Additive for High-Performance Aqueous Zinc-Ion Batteries. Thieu NA; Li W; Chen X; Li Q; Wang Q; Velayutham M; Grady ZM; Li X; Li W; Khramtsov VV; Reed DM; Li X; Liu X ACS Appl Mater Interfaces; 2023 Dec; 15(48):55570-55586. PubMed ID: 38058105 [TBL] [Abstract][Full Text] [Related]
2. Investigating the role of non-ionic surfactants as electrolyte additives for improved zinc anode performance in aqueous batteries. Zhang Z; Yan S; Dong H; Li T; Liu J; Song X; Huixiang Ang E; Wang Q; Wang Y J Colloid Interface Sci; 2025 Jan; 677(Pt A):885-894. PubMed ID: 39126807 [TBL] [Abstract][Full Text] [Related]
3. Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life span of aqueous zinc-ion batteries. Zhou W; Chen M; Tian Q; Chen J; Xu X; Han X; Xu J J Colloid Interface Sci; 2021 Nov; 601():486-494. PubMed ID: 34090026 [TBL] [Abstract][Full Text] [Related]
4. Improving the Performance of Aqueous Zinc-ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress. Ho VC; Lim H; Kim MJ; Mun J Chem Asian J; 2022 Jul; 17(14):e202200289. PubMed ID: 35546083 [TBL] [Abstract][Full Text] [Related]
5. Ultra-Stable Aqueous Zinc Anodes: Enabling High-Performance Zinc-Ion Batteries via a ZnSiF Huang Y; Guo R; Li Z; Zhang J; Liu W; Kang F Adv Sci (Weinh); 2024 Nov; 11(44):e2407201. PubMed ID: 39373706 [TBL] [Abstract][Full Text] [Related]
6. Hydrous Molybdenum Oxide Coating of Zinc Metal Anode via the Facile Electrodeposition Strategy and Its Performance Improvement Mechanisms for Aqueous Zinc-Ion Batteries. Yuan J; Shi Y; Bian W; Wu H; Chen Y; Zhou C; Chen X; Zhang W; Shen H Molecules; 2024 Jul; 29(13):. PubMed ID: 38999181 [TBL] [Abstract][Full Text] [Related]
7. Polyoxometalate solution passivation enabling dendrite-free and high-performance zinc anodes in aqueous zinc-ion batteries. Sui BB; Sha L; Bao QP; Wang PF; Gong Z; Zhou MD; Shi FN; Zhu K J Colloid Interface Sci; 2024 Sep; 669():886-895. PubMed ID: 38749227 [TBL] [Abstract][Full Text] [Related]
8. Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive. Yan X; Tong Y; Liu Y; Li X; Qin Z; Wu Z; Hu W Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177092 [TBL] [Abstract][Full Text] [Related]
9. Modulating solvated structure of Zn Zhang X; Zhai Y; Xie B; Li M; Lang H; Yang Y; Chen J; Chen Y; Zheng Q; Huo Y; Zhao R; Lam KH; Lin D J Colloid Interface Sci; 2024 Sep; 669():590-599. PubMed ID: 38729007 [TBL] [Abstract][Full Text] [Related]
10. An efficient electrolyte additive of tetramethylammonium sulfate hydrate for Dendritic-Free zinc anode for aqueous Zinc-ion batteries. Cao H; Huang X; Liu Y; Hu Q; Zheng Q; Huo Y; Xie F; Zhao J; Lin D J Colloid Interface Sci; 2022 Dec; 627():367-374. PubMed ID: 35863195 [TBL] [Abstract][Full Text] [Related]
11. Regulating Interfacial Desolvation and Deposition Kinetics Enables Durable Zn Anodes with Ultrahigh Utilization of 80. Jin H; Dai S; Xie K; Luo Y; Liu K; Zhu Z; Huang L; Huang L; Zhou J Small; 2022 Jan; 18(4):e2106441. PubMed ID: 34862724 [TBL] [Abstract][Full Text] [Related]
12. Dendrite-free zinc metal anodes enabled by electrolyte additive for high-performing aqueous zinc-ion batteries. Feng W; Liang Z; Zhou W; Li X; Wang W; Chi Y; Liu W; Gengzang D; Zhang G; Chen Q; Wang P; Chen W; Zhang S Dalton Trans; 2023 Jun; 52(22):7457-7463. PubMed ID: 37194376 [TBL] [Abstract][Full Text] [Related]
13. Manipulation of Zn Deposition Behavior to Achieve High-Rate Aqueous Zinc Batteries via High Valence Zirconium Ions. Chen Z; Feng J; Zhou W; Lu J; Cai J; Zhang L; Sheng L; Gu H; Yao P; Wang FR; Hao Z ACS Appl Mater Interfaces; 2024 Oct; 16(40):53801-53810. PubMed ID: 39340414 [TBL] [Abstract][Full Text] [Related]
14. Electrolyte Additive l-Lysine Stabilizes the Zinc Electrode in Aqueous Zinc Batteries for Long Cycling Performance. Yin J; Luo Y; Li M; Wu M; Guo K; Wen Z ACS Appl Mater Interfaces; 2024 Oct; 16(39):53242-53251. PubMed ID: 39313374 [TBL] [Abstract][Full Text] [Related]
15. Reconstructing the Anode Interface and Solvation Shell for Reversible Zinc Anodes. Zhang D; Cao J; Chanajaree R; Yang C; Chen H; Zhang X; Qin J ACS Appl Mater Interfaces; 2023 Mar; 15(9):11940-11948. PubMed ID: 36848259 [TBL] [Abstract][Full Text] [Related]
16. Highly Reversible and Dendrite-Free Zinc Anodes Enabled by PEDOT Nanowire Interfacial Layers for Aqueous Zinc-Ion Batteries. Wang Y; Zhang Z; Wang L; Wang J; Meng W; Sun J; Li Q; He X; Liu Z; Lei Z ACS Appl Mater Interfaces; 2024 Aug; 16(32):43026-43037. PubMed ID: 39093713 [TBL] [Abstract][Full Text] [Related]
17. Achieving Highly Stable Zn Metal Anodes at Low Temperature via Regulating Electrolyte Solvation Structure. You S; Deng Q; Wang Z; Chu Y; Xu Y; Lu J; Yang C Adv Mater; 2024 Jun; 36(26):e2402245. PubMed ID: 38615264 [TBL] [Abstract][Full Text] [Related]
18. Enabling Highly-Reversible Aqueous Zn-Ion Batteries via 4-Hydroxybenzoic Acid Sodium Salt Electrolyte Additive. Li M; Yin J; Feng X; Cui T; Wang M; Sun W; Wu H; Cheng Y; Xu X; Ding S; Wang J ChemSusChem; 2024 Feb; 17(4):e202301331. PubMed ID: 37853262 [TBL] [Abstract][Full Text] [Related]
19. Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Zhang H; Shui T; Moloto N; Li A; Zhang R; Liu J; Kure-Chu SZ; Hihara T; Zhang W; Sun Z J Colloid Interface Sci; 2025 Jan; 678(Pt B):1148-1157. PubMed ID: 39284243 [TBL] [Abstract][Full Text] [Related]
20. Surface modulation of zinc anodes by foveolate ZnTe nanoarrays for dendrite-free zinc ion batteries. He Y; Wang C; Gan Y; Kang L; Xie L; He Y; Wu Z; Tong G; Zhang H; Hu Q Dalton Trans; 2024 Jan; 53(5):2341-2348. PubMed ID: 38205856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]