These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38058198)

  • 41. One-Pot Synthesis of Silicon Quantum Dots-Based Fluorescent Nanomaterial and Its Application.
    Huang Y; Zhang Y; Dai Z; Miao R; Chen H
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):37513-37520. PubMed ID: 38980811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of the surface coverage of an alkyl carboxylic acid monolayer on waterborne and cellular uptake behaviors for silicon quantum dots.
    Shirahata N
    Sci Rep; 2022 Oct; 12(1):17211. PubMed ID: 36241686
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Silicon nanoparticles synthesized using a microwave method and used as a label-free fluorescent probe for detection of VB
    Long Y; Zhang L; Yu Y; Lin B; Cao Y; Guo M
    Luminescence; 2019 Sep; 34(6):544-552. PubMed ID: 31119853
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silicon quantum dots: surface matters.
    Dohnalová K; Gregorkiewicz T; Kůsová K
    J Phys Condens Matter; 2014 Apr; 26(17):173201. PubMed ID: 24713583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of Chemically Stable Ultrathin SiO
    Trinh CK; Lee H; So MG; Lee CL
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29798-29808. PubMed ID: 34105935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.
    Bru-Chevallier C; El Akra A; Pelloux-Gervais D; Dumont H; Canut B; Chauvin N; Regreny P; Gendry M; Patriarche G; Jancu JM; Even J; Noe P; Calvo V; Salem B
    J Nanosci Nanotechnol; 2011 Oct; 11(10):9153-9. PubMed ID: 22400316
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoluminescence Enhancement of Silole-Capped Silicon Quantum Dots Based on Förster Resonance Energy Transfer.
    Kim S; Kim S; Ko YC; Sohn H
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5057-61. PubMed ID: 26373077
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A "switch-on" fluorescence assay based on silicon quantum dots for determination of ascorbic acid.
    Ma F; Luo J; Li X; Liu S; Yang M; Chen X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119343. PubMed ID: 33359942
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly efficient ferric ion sensing and high resolution latent fingerprint imaging based on fluorescent silicon quantum dots.
    Peng D; Zhao Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 299():122827. PubMed ID: 37187149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity.
    Sobhanan J; Rival JV; Anas A; Sidharth Shibu E; Takano Y; Biju V
    Adv Drug Deliv Rev; 2023 Jun; 197():114830. PubMed ID: 37086917
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Silicene Quantum Dots: Synthesis, Spectroscopy, and Electrochemical Studies.
    Hu P; Chen L; Lu JE; Lee HW; Chen S
    Langmuir; 2018 Feb; 34(8):2834-2840. PubMed ID: 29397732
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Why do Si quantum dots with stronger fast emission have lower external photoluminescence quantum yield?
    Popelář T; Matějka F; Kopenec J; Morselli G; Ceroni P; Kůsová K
    Nanoscale Adv; 2024 May; 6(10):2644-2655. PubMed ID: 38752139
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications.
    Erogbogbo F; Chang CW; May JL; Liu L; Kumar R; Law WC; Ding H; Yong KT; Roy I; Sheshadri M; Swihart MT; Prasad PN
    Nanoscale; 2012 Sep; 4(17):5483-9. PubMed ID: 22854899
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protease sensing using nontoxic silicon quantum dots.
    Cheng X; McVey BFP; Robinson AB; Longatte G; O'Mara PB; Tan VTG; Thordarson P; Tilley RD; Gaus K; Justin Gooding J
    J Biomed Opt; 2017 Aug; 22(8):1-7. PubMed ID: 28836415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silicon Quantum Dot Light Emitting Diode at 620 nm.
    Yamada H; Shirahata N
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31083550
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride.
    Park NM; Choi CJ; Seong TY; Park SJ
    Phys Rev Lett; 2001 Feb; 86(7):1355-7. PubMed ID: 11178082
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inverted Device Architecture for Enhanced Performance of Flexible Silicon Quantum Dot Light-Emitting Diode.
    Ghosh B; Yamada H; Chinnathambi S; Özbilgin İNG; Shirahata N
    J Phys Chem Lett; 2018 Sep; 9(18):5400-5407. PubMed ID: 30182716
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.
    Baek SW; Shim JH; Seung HM; Lee GS; Hong JP; Lee KS; Park JG
    Nanoscale; 2014 Nov; 6(21):12524-31. PubMed ID: 25177831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Power Genuine Ultraviolet Light-Emitting Diodes Based On Colloidal Nanocrystal Quantum Dots.
    Kwak J; Lim J; Park M; Lee S; Char K; Lee C
    Nano Lett; 2015 Jun; 15(6):3793-9. PubMed ID: 25961530
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of Silicon Quantum Dots and Serum Proteins Interactions Using Asymmetrical Flow Field-Flow Fractionation.
    Nagarajan U; Chandra S; Yamazaki T; Shirahata N; Winnik FM
    Langmuir; 2023 Jun; 39(22):7557-7565. PubMed ID: 37225422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.