BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38058441)

  • 21. A scanning beam time-resolved imaging system for fingerprint detection.
    Roorda RD; Ribes AC; Damaskinos S; Dixon AE; Menzel ER
    J Forensic Sci; 2000 May; 45(3):563-7. PubMed ID: 10855959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-Resolved Detection of Fingermarks on Non-Porous and Semi-Porous Substrates Using Sr2MgSi2O7:Eu2+, Dy3+ Phosphors.
    Xiong X; Yuan X; Song J; Yin G
    Appl Spectrosc; 2016 Jun; 70(6):995-1000. PubMed ID: 27076516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) Properties of Dy
    Hemam R; Singh LR; Singh SD
    J Fluoresc; 2022 Nov; 32(6):2107-2117. PubMed ID: 35920948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of light exposure on the degradation of latent fingerprints on brass surfaces: the use of silver electroless deposition as a visualization technique.
    Payne IC; McCarthy I; Almond MJ; Baum JV; Bond JW
    J Forensic Sci; 2014 Sep; 59(5):1368-71. PubMed ID: 25182300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optically stimulated luminescence (OSL) response of Al2O3:C, BaFCl:Eu and K2Ca2(SO4)3:Eu phosphors.
    Kumar P; Bahl S; Sahare PD; Kumar S; Singh M
    Radiat Prot Dosimetry; 2015 Dec; 167(4):453-60. PubMed ID: 25646524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of Well-Preserved, Substrate-Versatile Latent Fingerprints by Aggregation-Induced Enhanced Emission-Active Conjugated Polyelectrolyte.
    Malik AH; Kalita A; Iyer PK
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37501-37508. PubMed ID: 28975794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermally Assisted Optically Stimulated Luminescence (TA-OSL) from Commercial BeO Dosimeters.
    Polymeris GS
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Use of Liquid Latex to Recover Latent Fingerprints that are Covered in Debris from Exterior Glass Surfaces of Vehicles.
    Kapsa C; Ho M; Libby M
    J Forensic Sci; 2020 Nov; 65(6):1961-1967. PubMed ID: 32809216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical and thermal pre-readout treatments to reduce the influence of fading on LiMgPO
    Malthez ALMC; Marczewska B; Kulig D; Bilski P; Kłosowski M
    Appl Radiat Isot; 2018 Jun; 136():118-120. PubMed ID: 29494944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploration of functionalized CdTe nanoparticles for latent fingerprint detection.
    Cheng KH; Ajimo J; Chen W
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1170-3. PubMed ID: 18468118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of latent fingerprint degradation patterns-a real fieldwork study.
    De Alcaraz-Fossoul J; Mestres Patris C; Balaciart Muntaner A; Barrot Feixat C; Gené Badia M
    Int J Legal Med; 2013 Jul; 127(4):857-70. PubMed ID: 23232540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel Organic-Inorganic Hybrid Polystyrene Nanoparticles with Trichromatic Luminescence for the Detection of Latent Fingerprints.
    Wang X; Liao T; Wang H; Hao H; Yang Q; Zhou H; Ma Y; Zhi M; Wang J; Fan R
    Int J Anal Chem; 2022; 2022():2230360. PubMed ID: 35295922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Modified Electrostatic Adsorption Apparatus for Latent Fingerprint Development on Unfired Cartridge Cases.
    Xu J; Zhang Z; Zheng X; Bond JW
    J Forensic Sci; 2017 May; 62(3):776-781. PubMed ID: 27957742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. APPLICATIONS OF OPTICALLY STIMULATED LUMINESCENCE IN MEDICAL DOSIMETRY.
    Yukihara EG; Kron T
    Radiat Prot Dosimetry; 2020 Dec; 192(2):122-138. PubMed ID: 33412585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward surface-enhanced Raman imaging of latent fingerprints.
    Connatser RM; Prokes SM; Glembocki OJ; Schuler RL; Gardner CW; Lewis SA; Lewis LA
    J Forensic Sci; 2010 Nov; 55(6):1462-70. PubMed ID: 20629909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Luminescence investigation of red-emitting Sr
    Wang Y; Ke Y; Chen S; Luo J; Shu S; Gao J; Deng B; Yu R
    J Colloid Interface Sci; 2021 Feb; 583():89-99. PubMed ID: 32980683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revisiting the thermal development of latent fingerprints on porous surfaces: new aspects and refinements.
    Brown AG; Sommerville D; Reedy BJ; Shimmon RG; Tahtouh M
    J Forensic Sci; 2009 Jan; 54(1):114-21. PubMed ID: 19018940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contactless Visualization of Latent Fingerprints on Nonporous Curved Surfaces of Circular Cross Section-A Statistical Evaluation on the Materials as Plane Mirror.
    Low WZ; Khoo BE; Abdullah AFLB
    J Forensic Sci; 2018 Jul; 63(4):1092-1098. PubMed ID: 29178492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Trends in Fluorescent Organic Materials for Latent Fingerprint Imaging.
    Lian J; Meng F; Wang W; Zhang Z
    Front Chem; 2020; 8():594864. PubMed ID: 33240855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Color-Tunable Binuclear (Eu, Tb) Nanocomposite Powder for the Enhanced Development of Latent Fingerprints Based on Electrostatic Interactions.
    Peng D; Wu X; Liu X; Huang M; Wang D; Liu R
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32859-32866. PubMed ID: 30168309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.