These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 38058695)
1. Effect of high cyclic hydrostatic pressure on osteogenesis of mesenchymal stem cells cultured in liquefied micro-compartments. Ghasemzadeh-Hasankolaei M; Pinto CA; Jesus D; Saraiva JA; Mano JF Mater Today Bio; 2023 Dec; 23():100861. PubMed ID: 38058695 [TBL] [Abstract][Full Text] [Related]
2. Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells. Huang C; Ogawa R Tissue Eng Part A; 2012 Oct; 18(19-20):2106-13. PubMed ID: 22607391 [TBL] [Abstract][Full Text] [Related]
4. The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure. Steward AJ; Wagner DR; Kelly DJ Eur Cell Mater; 2013 Feb; 25():167-78. PubMed ID: 23389751 [TBL] [Abstract][Full Text] [Related]
5. Pressure-induced mesenchymal stem cell osteogenesis is dependent on intermediate filament remodeling. Stavenschi E; Hoey DA FASEB J; 2019 Mar; 33(3):4178-4187. PubMed ID: 30550359 [TBL] [Abstract][Full Text] [Related]
7. Effects of platelet-rich fibrin on osteogenic differentiation of Schneiderian membrane derived mesenchymal stem cells and bone formation in maxillary sinus. Wang J; Sun Y; Liu Y; Yu J; Sun X; Wang L; Zhou Y Cell Commun Signal; 2022 Jun; 20(1):88. PubMed ID: 35705970 [TBL] [Abstract][Full Text] [Related]
8. Physiological cyclic hydrostatic pressure induces osteogenic lineage commitment of human bone marrow stem cells: a systematic study. Stavenschi E; Corrigan MA; Johnson GP; Riffault M; Hoey DA Stem Cell Res Ther; 2018 Oct; 9(1):276. PubMed ID: 30359324 [TBL] [Abstract][Full Text] [Related]
9. Hydrostatic pressure induces osteogenic differentiation of adipose-derived mesenchymal stem cells through increasing lncRNA-PAGBC. Ru J; Guo L; Ji Y; Niu Y Aging (Albany NY); 2020 Jul; 12(13):13477-13487. PubMed ID: 32661199 [TBL] [Abstract][Full Text] [Related]
10. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. Park SH; Sim WY; Min BH; Yang SS; Khademhosseini A; Kaplan DL PLoS One; 2012; 7(9):e46689. PubMed ID: 23029565 [TBL] [Abstract][Full Text] [Related]
11. The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells. Meyer EG; Buckley CT; Steward AJ; Kelly DJ J Mech Behav Biomed Mater; 2011 Oct; 4(7):1257-65. PubMed ID: 21783134 [TBL] [Abstract][Full Text] [Related]
12. Application of a Parallelizable Perfusion Bioreactor for Physiologic 3D Cell Culture. Egger D; Spitz S; Fischer M; Handschuh S; Glösmann M; Friemert B; Egerbacher M; Kasper C Cells Tissues Organs; 2017; 203(5):316-326. PubMed ID: 28291964 [TBL] [Abstract][Full Text] [Related]
13. Hydrostatic Pressure Regulates the Volume, Aggregation and Chondrogenic Differentiation of Bone Marrow Derived Stromal Cells. Aprile P; Kelly DJ Front Bioeng Biotechnol; 2020; 8():619914. PubMed ID: 33520969 [TBL] [Abstract][Full Text] [Related]
14. Three-Dimensional Mechanical Loading Modulates the Osteogenic Response of Mesenchymal Stem Cells to Tumor-Derived Soluble Signals. Lynch ME; Chiou AE; Lee MJ; Marcott SC; Polamraju PV; Lee Y; Fischbach C Tissue Eng Part A; 2016 Aug; 22(15-16):1006-15. PubMed ID: 27401765 [TBL] [Abstract][Full Text] [Related]
15. Type I collagen deposition via osteoinduction ameliorates YAP/TAZ activity in 3D floating culture clumps of mesenchymal stem cell/extracellular matrix complexes. Komatsu N; Kajiya M; Motoike S; Takewaki M; Horikoshi S; Iwata T; Ouhara K; Takeda K; Matsuda S; Fujita T; Kurihara H Stem Cell Res Ther; 2018 Dec; 9(1):342. PubMed ID: 30526677 [TBL] [Abstract][Full Text] [Related]
16. Effect of mechanical loading and substrate elasticity on the osteogenic and adipogenic differentiation of mesenchymal stem cells. Gungordu HI; Bao M; van Helvert S; Jansen JA; Leeuwenburgh SCG; Walboomers XF J Tissue Eng Regen Med; 2019 Dec; 13(12):2279-2290. PubMed ID: 31483956 [TBL] [Abstract][Full Text] [Related]
17. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sugimoto A; Miyazaki A; Kawarabayashi K; Shono M; Akazawa Y; Hasegawa T; Ueda-Yamaguchi K; Kitamura T; Yoshizaki K; Fukumoto S; Iwamoto T Sci Rep; 2017 Dec; 7(1):17696. PubMed ID: 29255201 [TBL] [Abstract][Full Text] [Related]
18. Purinergic Signaling Regulates the Transforming Growth Factor-β3-Induced Chondrogenic Response of Mesenchymal Stem Cells to Hydrostatic Pressure. Steward AJ; Kelly DJ; Wagner DR Tissue Eng Part A; 2016 Jun; 22(11-12):831-9. PubMed ID: 27137792 [TBL] [Abstract][Full Text] [Related]
19. Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway. Chen X; Yan J; He F; Zhong D; Yang H; Pei M; Luo ZP Free Radic Biol Med; 2018 Oct; 126():187-201. PubMed ID: 30096433 [TBL] [Abstract][Full Text] [Related]
20. Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells. Hsieh WT; Liu YS; Lee YH; Rimando MG; Lin KH; Lee OK Acta Biomater; 2016 Mar; 32():210-222. PubMed ID: 26790775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]