BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3805871)

  • 1. Neutrophil-induced K+ leak in human red cells: a potential mechanism for infection-mediated hemolysis.
    Claster S; Quintanilha A; Schott MA; Chiu D; Lubin B
    J Lab Clin Med; 1987 Feb; 109(2):201-10. PubMed ID: 3805871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal permeability pathways in human red blood cells.
    Ellory JC; Robinson HC; Browning JA; Stewart GW; Gehl KA; Gibson JS
    Blood Cells Mol Dis; 2007; 39(1):1-6. PubMed ID: 17434766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-electrolyte permeability of deoxygenated sickle cells compared.
    Ellory JC; Sequeira R; Constantine A; Wilkins RJ; Gibson JS
    Blood Cells Mol Dis; 2008; 41(1):44-9. PubMed ID: 18456522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exaggerated cation leak from oxygenated sickle red blood cells during deformation: evidence for a unique leak pathway.
    Sugihara T; Hebbel RP
    Blood; 1992 Nov; 80(9):2374-8. PubMed ID: 1421408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed hemolytic transfusion reaction in sickle cell disease patients: evidence of an emerging syndrome with suicidal red blood cell death.
    Chadebech P; Habibi A; Nzouakou R; Bachir D; Meunier-Costes N; Bonin P; Rodet M; Chami B; Galacteros F; Bierling P; Noizat-Pirenne F
    Transfusion; 2009 Sep; 49(9):1785-92. PubMed ID: 19413729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation of swollen erythrocytes provides a model of sickling-induced leak pathways, including a novel bromide-sensitive component.
    Sugihara T; Yawata Y; Hebbel RP
    Blood; 1994 May; 83(9):2684-91. PubMed ID: 7513211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rat model for sickle cell-mediated vaso-occlusion in retina.
    Lutty GA; Phelan A; McLeod DS; Fabry ME; Nagel RL
    Microvasc Res; 1996 Nov; 52(3):270-80. PubMed ID: 8954868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte adhesion is modified by alterations in cellular tonicity and volume.
    Wandersee NJ; Punzalan RC; Rettig MP; Kennedy MD; Pajewski NM; Sabina RL; Paul Scott J; Low PS; Hillery CA
    Br J Haematol; 2005 Nov; 131(3):366-77. PubMed ID: 16225657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The accumulation of malonyldialdehyde, an end product of membrane lipid peroxidation, can cause potassium leak in normal and sickle red blood cells.
    Jain SK; Ross JD; Levy GJ; Little RL; Duett J
    Biochem Med Metab Biol; 1989 Aug; 42(1):60-5. PubMed ID: 2775562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutrophil-mediated solubilization of the subendothelial matrix: oxidative and nonoxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes.
    Weiss SJ; Curnutte JT; Regiani S
    J Immunol; 1986 Jan; 136(2):636-41. PubMed ID: 3484496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives.
    Brugnara C; de Franceschi L; Alper SL
    J Clin Invest; 1993 Jul; 92(1):520-6. PubMed ID: 8326017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmodium falciparum: role of activated blood monocytes in erythrocyte membrane damage and red cell loss during malaria.
    Mohan K; Dubey ML; Ganguly NK; Mahajan RC
    Exp Parasitol; 1995 Feb; 80(1):54-63. PubMed ID: 7821411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased procoagulant activity of red blood cells from patients with homozygous sickle cell disease and beta-thalassemia.
    Helley D; Eldor A; Girot R; Ducrocq R; Guillin MC; Bezeaud A
    Thromb Haemost; 1996 Sep; 76(3):322-7. PubMed ID: 8883264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of potassium in red blood cells using unmeasured volumes of whole blood and combined sodium/potassium-selective membrane electrode measurements.
    Pietrzak M; Meyerhoff ME
    Anal Chem; 2009 Jul; 81(14):5961-5. PubMed ID: 19601656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human erythrocyte hemolysis induced by selenium and tellurium compounds increased by GSH or glucose: a possible involvement of reactive oxygen species.
    Schiar VP; Dos Santos DB; Paixão MW; Nogueira CW; Rocha JB; Zeni G
    Chem Biol Interact; 2009 Jan; 177(1):28-33. PubMed ID: 18983990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte membrane abnormalities in sickle cell disease.
    Williamson P; Puchulu E; Westerman M; Schlegel RA
    Biotechnol Appl Biochem; 1990 Oct; 12(5):523-8. PubMed ID: 2288707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical microscopy of antibody-dependent phagocytosis and lysis of erythrocytes by living normal and chronic granulomatous disease neutrophils: a role of superoxide anions in extra- and intra-cellular lysis.
    Francis JW; Boxer LA; Petty HR
    J Cell Physiol; 1988 Apr; 135(1):1-12. PubMed ID: 2835377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band 3 and glycophorin are progressively aggregated in density-fractionated sickle and normal red blood cells. Evidence from rotational and lateral mobility studies.
    Corbett JD; Golan DE
    J Clin Invest; 1993 Jan; 91(1):208-17. PubMed ID: 8423219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dehydration response of sickle cells to sickling-induced Ca(++) permeabilization.
    Lew VL; Etzion Z; Bookchin RM
    Blood; 2002 Apr; 99(7):2578-85. PubMed ID: 11895796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte cation permeability induced by mechanical stress: a model for sickle cell cation loss.
    Johnson RM; Gannon SA
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C746-51. PubMed ID: 2240192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.