BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38058765)

  • 1. Comparison of k-mer-based
    Ponsero AJ; Miller M; Hurwitz BL
    Microbiome Res Rep; 2023; 2(4):27. PubMed ID: 38058765
    [No Abstract]   [Full Text] [Related]  

  • 2. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.
    Dubinkina VB; Ischenko DS; Ulyantsev VI; Tyakht AV; Alexeev DG
    BMC Bioinformatics; 2016 Jan; 17():38. PubMed ID: 26774270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Libra: scalable k-mer-based tool for massive all-vs-all metagenome comparisons.
    Choi I; Ponsero AJ; Bomhoff M; Youens-Clark K; Hartman JH; Hurwitz BL
    Gigascience; 2019 Feb; 8(2):. PubMed ID: 30597002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quality control of microbiota metagenomics by k-mer analysis.
    Plaza Onate F; Batto JM; Juste C; Fadlallah J; Fougeroux C; Gouas D; Pons N; Kennedy S; Levenez F; Dore J; Ehrlich SD; Gorochov G; Larsen M
    BMC Genomics; 2015 Mar; 16(1):183. PubMed ID: 25887914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut.
    Vázquez-Castellanos JF; García-López R; Pérez-Brocal V; Pignatelli M; Moya A
    BMC Genomics; 2014 Jan; 15():37. PubMed ID: 24438450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A convenient correspondence between k-mer-based metagenomic distances and phylogenetically-informed β-diversity measures.
    Zhai H; Fukuyama J
    PLoS Comput Biol; 2023 Jan; 19(1):e1010821. PubMed ID: 36608056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From defaults to databases: parameter and database choice dramatically impact the performance of metagenomic taxonomic classification tools.
    Wright RJ; Comeau AM; Langille MGI
    Microb Genom; 2023 Mar; 9(3):. PubMed ID: 36867161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of machine learning algorithms for taxonomic classification of marine metagenomes.
    Park H; Lim SJ; Cosme J; O'Connell K; Sandeep J; Gayanilo F; Cutter GR; Montes E; Nitikitpaiboon C; Fisher S; Moustahfid H; Thompson LR
    Microbiol Spectr; 2023 Sep; 11(5):e0523722. PubMed ID: 37695074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of metagenomic assemblers based on hybrid reads of real and simulated metagenomic sequences.
    Wang Z; Wang Y; Fuhrman JA; Sun F; Zhu S
    Brief Bioinform; 2020 May; 21(3):777-790. PubMed ID: 30860572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lerna: transformer architectures for configuring error correction tools for short- and long-read genome sequencing.
    Sharma A; Jain P; Mahgoub A; Zhou Z; Mahadik K; Chaterji S
    BMC Bioinformatics; 2022 Jan; 23(1):25. PubMed ID: 34991450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the performance of different approaches for functional and taxonomic annotation of metagenomes.
    Tamames J; Cobo-Simón M; Puente-Sánchez F
    BMC Genomics; 2019 Dec; 20(1):960. PubMed ID: 31823721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A concurrent subtractive assembly approach for identification of disease associated sub-metagenomes.
    Han W; Wang M; Ye Y
    Res Comput Mol Biol; 2017; 2017():18-33. PubMed ID: 29177251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MetaFast: fast reference-free graph-based comparison of shotgun metagenomic data.
    Ulyantsev VI; Kazakov SV; Dubinkina VB; Tyakht AV; Alexeev DG
    Bioinformatics; 2016 Sep; 32(18):2760-7. PubMed ID: 27259541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MetaCRAST: reference-guided extraction of CRISPR spacers from unassembled metagenomes.
    Moller AG; Liang C
    PeerJ; 2017; 5():e3788. PubMed ID: 28894651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating
    Vosloo S; Huo L; Anderson CL; Dai Z; Sevillano M; Pinto A
    Microbiol Spectr; 2021 Dec; 9(3):e0143421. PubMed ID: 34730411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying
    Wang Y; Fu L; Ren J; Yu Z; Chen T; Sun F
    Front Microbiol; 2018; 9():872. PubMed ID: 29774017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LMAS: evaluating metagenomic short de novo assembly methods through defined communities.
    Mendes CI; Vila-Cerqueira P; Motro Y; Moran-Gilad J; Carriço JA; Ramirez M
    Gigascience; 2022 Dec; 12():. PubMed ID: 36576131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subtractive assembly for comparative metagenomics, and its application to type 2 diabetes metagenomes.
    Wang M; Doak TG; Ye Y
    Genome Biol; 2015 Nov; 16():243. PubMed ID: 26527161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.