These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38059022)

  • 1. Photo-enhanced dehydrogenation of formic acid on Pd-based hybrid plasmonic nanostructures.
    Zhu J; Dai J; Xu Y; Liu X; Wang Z; Liu H; Li G
    Nanoscale Adv; 2023 Dec; 5(24):6819-6829. PubMed ID: 38059022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Combination of Fermi Level Equilibrium and Plasmonic Effect for Formic Acid Dehydrogenation.
    Zhu J; Huang J; Dai J; Jiang L; Xu Y; Chen R; Li L; Fu X; Wang Z; Liu H; Li G
    ChemSusChem; 2023 Mar; 16(6):e202202069. PubMed ID: 36537011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level.
    Zheng Z; Tachikawa T; Majima T
    J Am Chem Soc; 2015 Jan; 137(2):948-57. PubMed ID: 25543832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized surface plasmon resonance for enhanced electrocatalysis.
    Zhao J; Xue S; Ji R; Li B; Li J
    Chem Soc Rev; 2021 Nov; 50(21):12070-12097. PubMed ID: 34533143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anchoring Pt Single Atoms on Te Nanowires for Plasmon-Enhanced Dehydrogenation of Formic Acid at Room Temperature.
    Han L; Zhang L; Wu H; Zu H; Cui P; Guo J; Guo R; Ye J; Zhu J; Zheng X; Yang L; Zhong Y; Liang S; Wang L
    Adv Sci (Weinh); 2019 Jun; 6(12):1900006. PubMed ID: 31380161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications.
    Ninakanti R; Dingenen F; Borah R; Peeters H; Verbruggen SW
    Top Curr Chem (Cham); 2022 Aug; 380(5):40. PubMed ID: 35951165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the role of Pd catalyst morphology and deposition criteria over large area plasmonic metasurfaces during light-enhanced electrochemical oxidation of formic acid.
    Yalavarthi R; Henrotte O; Kment Š; Naldoni A
    J Chem Phys; 2022 Sep; 157(11):114706. PubMed ID: 36137800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures.
    Linic S; Chavez S; Elias R
    Nat Mater; 2021 Jul; 20(7):916-924. PubMed ID: 33398116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance.
    Rajender G; Choudhury B; Giri PK
    Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Femtosecond Pulsed Laser-Induced Atomic Redistribution in Bimetallic Au-Pd Nanorods on Optoelectronic and Catalytic Properties.
    Nazemi M; Panikkanvalappil SR; Liao CK; Mahmoud MA; El-Sayed MA
    ACS Nano; 2021 Jun; 15(6):10241-10252. PubMed ID: 34032116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites.
    Wang M; Ye M; Iocozzia J; Lin C; Lin Z
    Adv Sci (Weinh); 2016 Jun; 3(6):1600024. PubMed ID: 27818901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.
    Ndukaife JC; Mishra A; Guler U; Nnanna AG; Wereley ST; Boltasseva A
    ACS Nano; 2014 Sep; 8(9):9035-43. PubMed ID: 25144369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Plasmon-Assisted Growth, Reshaping and Transformation of Nanomaterials.
    Zhang C; Qi J; Li Y; Han Q; Gao W; Wang Y; Dong J
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-Based Plasmonic Catalysis: Recent Advances and Future Perspectives.
    Xin Y; Yu K; Zhang L; Yang Y; Yuan H; Li H; Wang L; Zeng J
    Adv Mater; 2021 Aug; 33(32):e2008145. PubMed ID: 34050979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 10×-Enhanced Heterogeneous Nanocatalysis on a Nanoporous Gold Disk Array with High-Density Hot Spots.
    Arnob MMP; Artur C; Misbah I; Mubeen S; Shih WC
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13499-13506. PubMed ID: 30873828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Nanoparticle Film for Low-Power NIR-Enhanced Photocatalytic Reaction.
    Liang W; Sun Y; Liang Z; Li D; Wang Y; Qin W; Jiang L
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16753-16761. PubMed ID: 32119778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.