BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38059026)

  • 1. Influence of photothermal and plasma-mediated nano-processes on fluence thresholds for ultrafast laser-induced cavitation around gold nanoparticles.
    Agiotis L; De Lille VT; Meunier M
    Nanoscale Adv; 2023 Dec; 5(24):6887-6896. PubMed ID: 38059026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Understanding of DNA Denaturation in Nanoscale Thermal Gradients Created by Femtosecond Excitation of Gold Nanoparticles.
    Hastman DA; Chaturvedi P; Oh E; Melinger JS; Medintz IL; Vuković L; Díaz SA
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3404-3417. PubMed ID: 34982525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of parameters influencing plasmonic nanoparticle-mediated bubble generation with nanosecond laser pulses.
    Fales AM; Vogt WC; Wear KA; Pfefer TJ; Ilev IK
    J Biomed Opt; 2019 Jun; 24(6):1-10. PubMed ID: 31230425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy.
    Huang X; Qian W; El-Sayed IH; El-Sayed MA
    Lasers Surg Med; 2007 Oct; 39(9):747-53. PubMed ID: 17960762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma-mediated photothermal effects in ultrafast laser irradiation of gold nanoparticle dimers in water.
    Hatef A; Meunier M
    Opt Express; 2015 Feb; 23(3):1967-80. PubMed ID: 25836068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical excitation and detection of vapor bubbles around plasmonic nanoparticles.
    Lapotko D
    Opt Express; 2009 Feb; 17(4):2538-56. PubMed ID: 19219157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal properties of gold nanoparticles under exposure to high optical energies.
    Hleb EY; Lapotko DO
    Nanotechnology; 2008 Sep; 19(35):355702. PubMed ID: 21828856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas.
    Cain CP; Thomas RJ; Noojin GD; Stolarski DJ; Kennedy PK; Buffington GD; Rockwell BA
    Graefes Arch Clin Exp Ophthalmol; 2005 Feb; 243(2):101-12. PubMed ID: 15241612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodisruption in the human cornea as a function of laser pulse width.
    Kurtz RM; Liu X; Elner VM; Squier JA; Du D; Mourou GA
    J Refract Surg; 1997; 13(7):653-8. PubMed ID: 9427203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles.
    Lukianova-Hleb E; Hu Y; Latterini L; Tarpani L; Lee S; Drezek RA; Hafner JH; Lapotko DO
    ACS Nano; 2010 Apr; 4(4):2109-23. PubMed ID: 20307085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cavitation bubble interaction with temporally separated fs-laser pulses.
    Tinne N; Knoop G; Kallweit N; Veith S; Bleeker S; Lubatschowski H; Krüger A; Ripken T
    J Biomed Opt; 2014 Apr; 19(4):048001. PubMed ID: 24781592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump-probe spectral measurements of aqueous colloidal gold nanoparticles.
    Katayama T; Setoura K; Werner D; Miyasaka H; Hashimoto S
    Langmuir; 2014 Aug; 30(31):9504-13. PubMed ID: 25083945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near threshold nucleation and growth of cavitation bubbles generated with a picosecond laser.
    Agrež V; Mur J; Petelin J; Petkovšek R
    Ultrason Sonochem; 2023 Jan; 92():106243. PubMed ID: 36459905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of laser damage threshold energies in the artificial retina.
    Payne DJ; Hopkins RA; Eilert BG; Noojin GD; Stolarski DJ; Thomas RJ; Cain CP; Hengst GT; Kennedy PK; Jost TR; Rockwell BA
    J Biomed Opt; 1999 Jul; 4(3):337-44. PubMed ID: 23015254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High fidelity visualization of multiscale dynamics of laser-induced bubbles in liquids containing gold nanoparticles.
    Bhuyan MK; Soleilhac A; Somayaji M; Itina TE; Antoine R; Stoian R
    Sci Rep; 2018 Jun; 8(1):9665. PubMed ID: 29941939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-tattoo removal--a study of the mechanism and the optimal treatment strategy via computer simulations.
    Ho DD; London R; Zimmerman GB; Young DA
    Lasers Surg Med; 2002; 30(5):389-97. PubMed ID: 12116333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimodal Size Distribution of Gold Nanoparticles under Picosecond Laser Pulses.
    Inasawa S; Sugiyama M; Yamaguchi Y
    J Phys Chem B; 2005 May; 109(19):9404-10. PubMed ID: 16852127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photothermal bubbles as optical scattering probes for imaging living cells.
    Hleb EY; Hu Y; Drezek RA; Hafner JH; Lapotko DO
    Nanomedicine (Lond); 2008 Dec; 3(6):797-812. PubMed ID: 19025454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed photoacoustic and photothermal response of gold nanoparticles.
    Kumar D; Soni RK; Ghai DP
    Nanotechnology; 2020 Jan; 31(3):035704. PubMed ID: 31553954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.