These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38059065)

  • 1. Commute Booster: A Mobile Application for First/Last Mile and Middle Mile Navigation Support for People With Blindness and Low Vision.
    Feng J; Beheshti M; Philipson M; Ramsaywack Y; Porfiri M; Rizzo JR
    IEEE J Transl Eng Health Med; 2023; 11():523-535. PubMed ID: 38059065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Extended Usability and UX Evaluation of a Mobile Application for the Navigation of Individuals with Blindness and Visual Impairments Outdoors-An Evaluation Framework Based on Training.
    Theodorou P; Tsiligkos K; Meliones A; Filios C
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UNav: An Infrastructure-Independent Vision-Based Navigation System for People with Blindness and Low Vision.
    Yang A; Beheshti M; Hudson TE; Vedanthan R; Riewpaiboon W; Mongkolwat P; Feng C; Rizzo JR
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electronic travel guide for visually impaired - vehicle board recognition system through computer vision techniques.
    Noorjahan M; Punitha A
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):238-241. PubMed ID: 30856030
    [No Abstract]   [Full Text] [Related]  

  • 5. What Visual Targets Are Viewed by Users With a Handheld Mobile Magnifier App.
    Luo G
    Transl Vis Sci Technol; 2021 Mar; 10(3):16. PubMed ID: 34003950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal sensing and intuitive steering assistance improve navigation and mobility for people with impaired vision.
    Slade P; Tambe A; Kochenderfer MJ
    Sci Robot; 2021 Oct; 6(59):eabg6594. PubMed ID: 34644159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartphone-based computer vision travelling aids for blind and visually impaired individuals: A systematic review.
    Budrionis A; Plikynas D; Daniušis P; Indrulionis A
    Assist Technol; 2022 Mar; 34(2):178-194. PubMed ID: 32207640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uses of Wayfinding Tools by People Who Are Blind and Low Vision.
    Erdemli M; Collins KC
    Stud Health Technol Inform; 2023 Aug; 306():389-396. PubMed ID: 37638940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assistive technology for children and young people with low vision.
    Thomas R; Barker L; Rubin G; Dahlmann-Noor A
    Cochrane Database Syst Rev; 2015 Jun; 2015(6):CD011350. PubMed ID: 26086876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field Evaluation of a Mobile App for Assisting Blind and Visually Impaired Travelers to Find Bus Stops.
    Pundlik S; Shivshanker P; Traut-Savino T; Luo G
    Transl Vis Sci Technol; 2024 Jan; 13(1):11. PubMed ID: 38224330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Public transport planning tool for users on the autism spectrum: from concept to prototype.
    Rezae M; McMeekin D; Tan T; Krishna A; Lee H; Falkmer T
    Disabil Rehabil Assist Technol; 2021 Feb; 16(2):177-187. PubMed ID: 31381860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of computer-vision and BLE technology based indoor navigation systems for people with visual impairments.
    Kunhoth J; Karkar A; Al-Maadeed S; Al-Attiyah A
    Int J Health Geogr; 2019 Dec; 18(1):29. PubMed ID: 31829212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geospatial assistive technologies for wheelchair users: a scoping review of usability measures and criteria for mobile user interfaces and their potential applicability.
    Prémont MÉ; Vincent C; Mostafavi MA; Routhier F
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):119-131. PubMed ID: 30663444
    [No Abstract]   [Full Text] [Related]  

  • 14. Indoor Localization for Visually Impaired Travelers Using Computer Vision on a Smartphone.
    Fusco G; Coughlan JM
    Proc 17th Int Web All Conf (2020); 2020 Apr; 2020():. PubMed ID: 33163996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. User feedback on usefulness and accessibility features of mobile applications by people with visual impairment.
    Christy B; Pillai A
    Indian J Ophthalmol; 2021 Mar; 69(3):555-558. PubMed ID: 33595471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobile assistive technologies for the visually impaired.
    Hakobyan L; Lumsden J; O'Sullivan D; Bartlett H
    Surv Ophthalmol; 2013; 58(6):513-28. PubMed ID: 24054999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The BLV App Arcade: a new curated repository and evaluation rubric for mobile applications supporting blindness and low vision.
    Liu BM; Beheshti M; Naeimi T; Zhu Z; Vedanthan R; Seiple W; Rizzo JR
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1405-1414. PubMed ID: 36927193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Usability of a navigation application for travel in Quebec City with wheeled mobility device and, further validation of the Evaluation of satisfaction with geospatial assistive technology.
    Vincent C; Levac S; Dumont F; Archambault PS; Routhier F; Mostafavi MA
    Disabil Rehabil Assist Technol; 2024 Feb; 19(2):367-382. PubMed ID: 35730247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When Ultrasonic Sensors and Computer Vision Join Forces for Efficient Obstacle Detection and Recognition.
    Mocanu B; Tapu R; Zaharia T
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801834
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.