These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38059165)
21. Fundus autofluorescence and fate of glycoxidized particles injected into subretinal space in rabbit age-related macular degeneration model. Hirata M; Yasukawa T; Wiedemann P; Kimura E; Kunou N; Eichler W; Takase A; Sato R; Ogura Y Graefes Arch Clin Exp Ophthalmol; 2009 Jul; 247(7):929-37. PubMed ID: 19330346 [TBL] [Abstract][Full Text] [Related]
22. Stages of Drusen-Associated Atrophy in Age-Related Macular Degeneration Visible via Histologically Validated Fundus Autofluorescence. Chen L; Messinger JD; Ferrara D; Freund KB; Curcio CA Ophthalmol Retina; 2021 Aug; 5(8):730-742. PubMed ID: 33217617 [TBL] [Abstract][Full Text] [Related]
23. Comparison of fundus autofluorescence of age-related macular degeneration between a fundus camera and a confocal scanning laser ophthalmoscope. Yamamoto M; Kohno T; Shiraki K Osaka City Med J; 2009 Jun; 55(1):19-27. PubMed ID: 19725431 [TBL] [Abstract][Full Text] [Related]
24. Multimodal Imaging, OCT B-Scan Localization, and Laiginhas R; Liu J; Shen M; Shi Y; Trivizki O; Waheed NK; Gregori G; Rosenfeld PJ Ophthalmol Sci; 2022 Jun; 2(2):100116. PubMed ID: 36249700 [TBL] [Abstract][Full Text] [Related]
25. Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging. Wu M; Cai X; Chen Q; Ji Z; Niu S; Leng T; Rubin DL; Park H Comput Methods Programs Biomed; 2019 Dec; 182():105101. PubMed ID: 31600644 [TBL] [Abstract][Full Text] [Related]
26. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier. Treder M; Lauermann JL; Eter N Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2053-2060. PubMed ID: 30091055 [TBL] [Abstract][Full Text] [Related]
27. Deep learning model for automatic differentiation of EMAP from AMD in macular atrophy. Chouraqui M; Crincoli E; Miere A; Meunier IA; Souied EH Sci Rep; 2023 Nov; 13(1):20354. PubMed ID: 37990107 [TBL] [Abstract][Full Text] [Related]
28. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958 [TBL] [Abstract][Full Text] [Related]
29. Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. Midena E; Vujosevic S; Convento E; Manfre' A; Cavarzeran F; Pilotto E Br J Ophthalmol; 2007 Nov; 91(11):1499-503. PubMed ID: 17504849 [TBL] [Abstract][Full Text] [Related]
31. In-vivo mapping of drusen by fundus autofluorescence and spectral-domain optical coherence tomography imaging. Göbel AP; Fleckenstein M; Heeren TF; Holz FG; Schmitz-Valckenberg S Graefes Arch Clin Exp Ophthalmol; 2016 Jan; 254(1):59-67. PubMed ID: 25904296 [TBL] [Abstract][Full Text] [Related]
32. Generating Synthesized Fluorescein Angiography Images From Color Fundus Images by Generative Adversarial Networks for Macular Edema Assessment. Xie X; Jiachu D; Liu C; Xie M; Guo J; Cai K; Li X; Mi W; Ye H; Luo L; Yang J; Zhang M; Zheng C Transl Vis Sci Technol; 2024 Sep; 13(9):26. PubMed ID: 39312216 [TBL] [Abstract][Full Text] [Related]
33. The Minnesota Grading System using fundus autofluorescence of eye bank eyes: a correlation to age-related macular degeneration (an AOS thesis). Olsen TW Trans Am Ophthalmol Soc; 2008; 106():383-401. PubMed ID: 19277247 [TBL] [Abstract][Full Text] [Related]
34. Fundus Autofluorescence in Neovascular Age-Related Macular Degeneration: A Clinicopathologic Correlation Relevant to Macular Atrophy. Chen L; Messinger JD; Ferrara D; Freund KB; Curcio CA Ophthalmol Retina; 2021 Nov; 5(11):1085-1096. PubMed ID: 33540168 [TBL] [Abstract][Full Text] [Related]
35. Fundus Autofluorescence in Age-related Macular Degeneration. Ly A; Nivison-Smith L; Assaad N; Kalloniatis M Optom Vis Sci; 2017 Feb; 94(2):246-259. PubMed ID: 27668639 [TBL] [Abstract][Full Text] [Related]
36. Characteristics of fundus autofluorescence and drusen in the fellow eyes of Japanese patients with exudative age-related macular degeneration. Fujimura S; Ueta T; Takahashi H; Obata R; Smith RT; Yanagi Y Graefes Arch Clin Exp Ophthalmol; 2013 Dec; 251(12):1-9. PubMed ID: 23677486 [TBL] [Abstract][Full Text] [Related]
37. Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD. Schmitz-Valckenberg S; Bindewald-Wittich A; Dolar-Szczasny J; Dreyhaupt J; Wolf S; Scholl HP; Holz FG; Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2648-54. PubMed ID: 16723482 [TBL] [Abstract][Full Text] [Related]
38. Spectral and lifetime resolution of fundus autofluorescence in advanced age-related macular degeneration revealing different signal sources. Schultz R; Hasan S; Curcio CA; Smith RT; Meller D; Hammer M Acta Ophthalmol; 2022 May; 100(3):e841-e846. PubMed ID: 34258885 [TBL] [Abstract][Full Text] [Related]
39. Comparison of color fundus photographs and fundus autofluorescence images in measuring geographic atrophy area. Khanifar AA; Lederer DE; Ghodasra JH; Stinnett SS; Lee JJ; Cousins SW; Bearelly S Retina; 2012 Oct; 32(9):1884-91. PubMed ID: 22547167 [TBL] [Abstract][Full Text] [Related]
40. Central areolar choroidal dystrophy (CACD) and age-related macular degeneration (AMD): differentiating characteristics in multimodal imaging. Smailhodzic D; Fleckenstein M; Theelen T; Boon CJ; van Huet RA; van de Ven JP; Den Hollander AI; Schmitz-Valckenberg S; Hoyng CB; Weber BH; Holz FG; Klevering BJ Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8908-18. PubMed ID: 22003107 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]