These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38059390)

  • 1. Using cross-validation methods to select time series models: Promises and pitfalls.
    Liu S; Zhou DJ
    Br J Math Stat Psychol; 2024 May; 77(2):337-355. PubMed ID: 38059390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VAR(1) based models do not always outpredict AR(1) models in typical psychological applications.
    Bulteel K; Mestdagh M; Tuerlinckx F; Ceulemans E
    Psychol Methods; 2018 Dec; 23(4):740-756. PubMed ID: 29745683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
    Vrieze SI
    Psychol Methods; 2012 Jun; 17(2):228-43. PubMed ID: 22309957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of Akaike Information Criterion and Bayesian Information Criterion in Selecting Partition Models and Mixture Models.
    Liu Q; Charleston MA; Richards SA; Holland BR
    Syst Biol; 2023 May; 72(1):92-105. PubMed ID: 36575813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Choosing between AR(1) and VAR(1) models in typical psychological applications.
    Dablander F; Ryan O; Haslbeck JMB
    PLoS One; 2020; 15(10):e0240730. PubMed ID: 33119716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new sample-size planning approach for person-specific VAR(1) studies: Predictive accuracy analysis.
    Revol J; Lafit G; Ceulemans E
    Behav Res Methods; 2024 Oct; 56(7):7152-7167. PubMed ID: 38717682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the practical differences between model selection methods in inferences about choice response time tasks.
    Evans NJ
    Psychon Bull Rev; 2019 Aug; 26(4):1070-1098. PubMed ID: 30783896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the number of factors in exploratory factor analysis via out-of-sample prediction errors.
    Haslbeck JMB; van Bork R
    Psychol Methods; 2024 Feb; 29(1):48-64. PubMed ID: 36326634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC?
    Lartillot N
    Syst Biol; 2023 Jun; 72(3):616-638. PubMed ID: 36810802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized order estimation for autoregressive models to predict respiratory motion.
    Dürichen R; Wissel T; Schweikard A
    Int J Comput Assist Radiol Surg; 2013 Nov; 8(6):1037-42. PubMed ID: 23690167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing variation in life-history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists.
    Hamel S; Yoccoz NG; Gaillard JM
    Biol Rev Camb Philos Soc; 2017 May; 92(2):754-775. PubMed ID: 26932678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regularizing priors for Bayesian VAR applications to large ecological datasets.
    Ward EJ; Marshall K; Scheuerell MD
    PeerJ; 2022; 10():e14332. PubMed ID: 36389409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparisons of zero-augmented continuous regression models from a Bayesian perspective.
    Ye T; Lachos VH; Wang X; Dey DK
    Stat Med; 2021 Feb; 40(5):1073-1100. PubMed ID: 33341974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Person-specific versus multilevel autoregressive models: Accuracy in parameter estimates at the population and individual levels.
    Liu S
    Br J Math Stat Psychol; 2017 Nov; 70(3):480-498. PubMed ID: 28225554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson's disease.
    Junaid M; Ali S; Eid F; El-Sappagh S; Abuhmed T
    Comput Methods Programs Biomed; 2023 Jun; 234():107495. PubMed ID: 37003039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CHull as an alternative to AIC and BIC in the context of mixtures of factor analyzers.
    Bulteel K; Wilderjans TF; Tuerlinckx F; Ceulemans E
    Behav Res Methods; 2013 Sep; 45(3):782-91. PubMed ID: 23307573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systematic Study into the Factors that Affect the Predictive Accuracy of Multilevel VAR(1) Models.
    Lafit G; Meers K; Ceulemans E
    Psychometrika; 2022 Jun; 87(2):432-476. PubMed ID: 34724142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian spatiotemporal crash frequency models with mixture components for space-time interactions.
    Cheng W; Gill GS; Zhang Y; Cao Z
    Accid Anal Prev; 2018 Mar; 112():84-93. PubMed ID: 29324265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Informing VAR(1) with qualitative dynamical features improves predictive accuracy.
    Loossens T; Dejonckheere E; Tuerlinckx F; Verdonck S
    Psychol Methods; 2021 Dec; 26(6):635-659. PubMed ID: 34582245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sparsity-controlled vector autoregressive model.
    Carrizosa E; Olivares-Nadal AV; Ramírez-Cobo P
    Biostatistics; 2017 Apr; 18(2):244-259. PubMed ID: 27655816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.