These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38059724)

  • 1. Correction: Elaborating the interplay between the detecting unit and emitting unit in infrared quantum dot up-conversion photodetectors.
    Xua Q; Yang X; Liu JJ; Li F; Chang R; Wang L; Wang AQ; Wu Z; Shen H; Du Z
    Nanoscale; 2024 Jan; 16(2):941. PubMed ID: 38059724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elaborating the interplay between the detecting unit and emitting unit in infrared quantum dot up-conversion photodetectors.
    Xu Q; Yang X; Liu JJ; Li F; Chang R; Wang L; Wang AQ; Wu Z; Shen H; Du Z
    Nanoscale; 2023 May; 15(18):8197-8203. PubMed ID: 37097127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Photon Absorptivity of Quantum Dot Infrared Photodetectors Achieved by the Surface Plasmon Effect of Metal Nanohole Array.
    Liu H; Kang Y; Meng T; Tian C; Wei G
    Nanoscale Res Lett; 2020 May; 15(1):98. PubMed ID: 32372245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction: High performance blue quantum dot light-emitting diodes by attaching diffraction wrinkle patterns.
    Qi H; Wang S; Li C; Zhao Y; Xu B; Jiang X; Fang Y; Wang A; Shen H; Du Z
    Nanoscale; 2021 May; 13(20):9446. PubMed ID: 33982732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction: A high quality liquid-type quantum dot white light-emitting diode.
    Sher CW; Lin CH; Lin HY; Lin CC; Huang CH; Chen KJ; Li JR; Wang KY; Tu HH; Fu CC; Kuo HC
    Nanoscale; 2018 Mar; 10(13):6214. PubMed ID: 29595205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic and quantum dot hybrid photodetectors: towards full-band and fast detection.
    Liu J; Wang J; Xian K; Zhao W; Zhou Z; Li S; Ye L
    Chem Commun (Camb); 2023 Jan; 59(3):260-269. PubMed ID: 36510729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level.
    Pradhan S; Di Stasio F; Bi Y; Gupta S; Christodoulou S; Stavrinadis A; Konstantatos G
    Nat Nanotechnol; 2019 Jan; 14(1):72-79. PubMed ID: 30510279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction: High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode.
    Sun T; Chen T; Chen J; Lou Q; Liang Z; Li G; Lin X; Yang G; Zhou H
    Nanoscale; 2024 Feb; 16(7):3764. PubMed ID: 38295379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction: Strongly emissive white-light-emitting silver iodide based inorganic-organic hybrid structures with comparable quantum efficiency to commercial phosphors.
    Lin F; Liu W; Wang H; Li J
    Chem Commun (Camb); 2022 Jun; 58(46):6669. PubMed ID: 35615961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrowband colloidal quantum dot photodetectors for wavelength measurement applications.
    De Iacovo A; Venettacci C; Giansante C; Colace L
    Nanoscale; 2020 May; 12(18):10044-10050. PubMed ID: 32342966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-Temperature Direct Synthesis of PbSe Quantum Dot Inks for High-Detectivity Near-Infrared Photodetectors.
    Peng M; Liu Y; Li F; Hong X; Liu Y; Wen Z; Liu Z; Ma W; Sun X
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51198-51204. PubMed ID: 34672525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors.
    Zhao X; Ma H; Cai H; Wei Z; Bi Y; Tang X; Qin T
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Structure and Device Engineering for High Performance and Scalable Quantum Dot Infrared Photodetectors.
    Xu K; Zhou W; Ning Z
    Small; 2020 Nov; 16(47):e2003397. PubMed ID: 33140560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors.
    Ackerman MM; Tang X; Guyot-Sionnest P
    ACS Nano; 2018 Jul; 12(7):7264-7271. PubMed ID: 29975502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress and prospects for quantum dots in a well infrared photodetectors.
    Vandervelde TE; Krishna S
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1450-60. PubMed ID: 20355535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel narrow band-gap InAsSbP-based quantum dot mid-infrared photodetectors: fabrication, optoelectronic and electrophysical properties.
    Harutyunyan V; Gambaryan K; Aroutiounian V
    J Nanosci Nanotechnol; 2013 Feb; 13(2):799-803. PubMed ID: 23646518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra High-efficiency Integrated Mid Infrared to Visible Up-conversion System.
    Motmaen A; Rostami A; Matloub S
    Sci Rep; 2020 Jun; 10(1):9325. PubMed ID: 32518387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-Transport Layers Employing Strongly Bound Ligands Enhance Stability in Colloidal Quantum Dot Infrared Photodetectors.
    Zhang Y; Vafaie M; Xu J; Pina JM; Xia P; Najarian AM; Atan O; Imran M; Xie K; Hoogland S; Sargent EH
    Adv Mater; 2022 Nov; 34(47):e2206884. PubMed ID: 36134538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark current and noise analyses of quantum dot infrared photodetectors.
    Liu H; Zhang J
    Appl Opt; 2012 May; 51(14):2767-71. PubMed ID: 22614502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive Colloidal Quantum-Dot Upconverters for Extended Short-Wave Infrared.
    Mu G; Rao T; Zhang S; Wen C; Chen M; Hao Q; Tang X
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45553-45561. PubMed ID: 36166596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.