These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 38059770)
1. Bio-inspired Double Angstrom-Scale Confinement in Ti-deficient Ti Liu C; Ye C; Zhang T; Tang J; Mao K; Chen L; Xue L; Sun J; Zhang W; Wang X; Xiong P; Wang G; Zhu J Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202315947. PubMed ID: 38059770 [TBL] [Abstract][Full Text] [Related]
2. Vacancy Engineering for High-Efficiency Nanofluidic Osmotic Energy Generation. Safaei J; Gao Y; Hosseinpour M; Zhang X; Sun Y; Tang X; Zhang Z; Wang S; Guo X; Wang Y; Chen Z; Zhou D; Kang F; Jiang L; Wang G J Am Chem Soc; 2023 Feb; 145(4):2669-2678. PubMed ID: 36651291 [TBL] [Abstract][Full Text] [Related]
4. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206 [TBL] [Abstract][Full Text] [Related]
5. Bioinspired Angstrom-Scale Heterogeneous MOF-on-MOF Membrane for Osmotic Energy Harvesting. Tonnah RK; Chai M; Abdollahzadeh M; Xiao H; Mohammad M; Hosseini E; Zakertabrizi M; Jarrahbashi D; Asadi A; Razmjou A; Asadnia M ACS Nano; 2023 Jul; 17(13):12445-12457. PubMed ID: 37347939 [TBL] [Abstract][Full Text] [Related]
6. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels. Lin YC; Chen HH; Chu CW; Yeh LH Nano Lett; 2024 Sep; 24(37):11756-11762. PubMed ID: 39236070 [TBL] [Abstract][Full Text] [Related]
7. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure. Yang ZJ; Yeh LH; Peng YH; Chuang YP; Wu KC Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202408375. PubMed ID: 38847272 [TBL] [Abstract][Full Text] [Related]
8. Interfacial Super-Assembly of Vacancy Engineered Ultrathin-Nanosheets Toward Nanochannels for Smart Ion Transport and Salinity Gradient Power Conversion. Awati A; Yang R; Shi T; Zhou S; Zhang X; Zeng H; Lv Y; Liang K; Xie L; Zhu D; Liu M; Kong B Angew Chem Int Ed Engl; 2024 Aug; 63(32):e202407491. PubMed ID: 38735853 [TBL] [Abstract][Full Text] [Related]
9. Angstrom-Scale 2D Channels Designed For Osmotic Energy Harvesting. Ding Z; Gu T; Zhang M; Wang K; Sun D; Li J Small; 2024 Nov; 20(44):e2403593. PubMed ID: 39180252 [TBL] [Abstract][Full Text] [Related]
10. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH Yao L; Li Q; Pan S; Cheng J; Liu X Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210 [TBL] [Abstract][Full Text] [Related]
11. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes. Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J J Colloid Interface Sci; 2024 Nov; 673():365-372. PubMed ID: 38878371 [TBL] [Abstract][Full Text] [Related]
12. Serosa-Mimetic Nanoarchitecture Membranes for Highly Efficient Osmotic Energy Generation. Man Z; Safaei J; Zhang Z; Wang Y; Zhou D; Li P; Zhang X; Jiang L; Wang G J Am Chem Soc; 2021 Oct; 143(39):16206-16216. PubMed ID: 34570466 [TBL] [Abstract][Full Text] [Related]
13. Advancing osmotic power generation by covalent organic framework monolayer. Yang J; Tu B; Zhang G; Liu P; Hu K; Wang J; Yan Z; Huang Z; Fang M; Hou J; Fang Q; Qiu X; Li L; Tang Z Nat Nanotechnol; 2022 Jun; 17(6):622-628. PubMed ID: 35469012 [TBL] [Abstract][Full Text] [Related]
14. Two-Dimensional Sodium Channels with High Selectivity and Conductivity for Osmotic Power Generation from Wastewater. Huang T; Kan X; Fan J; Gao H; Yu L; Zhang L; Xia J; Gao J; Liu X; Sui K; Jiang L ACS Nano; 2023 Sep; 17(17):17245-17253. PubMed ID: 37638530 [TBL] [Abstract][Full Text] [Related]
15. Light-Augmented Multi-ion Interaction in MXene Membrane for Simultaneous Water Treatment and Osmotic Power Generation. Xia J; Gao H; Pan S; Huang T; Zhang L; Sui K; Gao J; Liu X; Jiang L ACS Nano; 2023 Dec; 17(24):25269-25278. PubMed ID: 38071658 [TBL] [Abstract][Full Text] [Related]
16. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. Yip NY; Elimelech M Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687 [TBL] [Abstract][Full Text] [Related]
17. Giant Blue Energy Harvesting in Two-Dimensional Polymer Membranes with Spatially Aligned Charges. Liu X; Li X; Chu X; Zhang B; Zhang J; Hambsch M; Mannsfeld SCB; Borrelli M; Löffler M; Pohl D; Liu Y; Zhang Z; Feng X Adv Mater; 2024 May; 36(18):e2310791. PubMed ID: 38299804 [TBL] [Abstract][Full Text] [Related]
18. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion. Fu W; Zhang J; Zhang Q; Ahmad M; Sun Z; Li Z; Zhu Y; Zhou Y; Wang S Int J Biol Macromol; 2024 Feb; 257(Pt 1):128546. PubMed ID: 38061510 [TBL] [Abstract][Full Text] [Related]
19. Two-Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion. Qian Y; Liu D; Yang G; Chen J; Ma Y; Wang L; Wang X; Lei W ChemSusChem; 2022 Oct; 15(19):e202200933. PubMed ID: 35853838 [TBL] [Abstract][Full Text] [Related]
20. Porous Ti Hong S; El-Demellawi JK; Lei Y; Liu Z; Marzooqi FA; Arafat HA; Alshareef HN ACS Nano; 2022 Jan; 16(1):792-800. PubMed ID: 35000386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]