These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38059814)

  • 1. Accelerating
    Li D; Liu ZF; Yang L
    J Chem Theory Comput; 2023 Dec; 19(24):9435-9444. PubMed ID: 38059814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating GW-Based Energy Level Alignment Calculations for Molecule-Metal Interfaces Using a Substrate Screening Approach.
    Liu ZF; da Jornada FH; Louie SG; Neaton JB
    J Chem Theory Comput; 2019 Jul; 15(7):4218-4227. PubMed ID: 31194538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully ab initio finite-size corrections for charged-defect supercell calculations.
    Freysoldt C; Neugebauer J; Van de Walle CG
    Phys Rev Lett; 2009 Jan; 102(1):016402. PubMed ID: 19257218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Many-body GW calculations with very large scale polarizable environments made affordable: A fully ab initio QM/QM approach.
    Amblard D; Blase X; Duchemin I
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37873961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frenkel pair formation energy for cubic Fe
    Shutikova MI; Stegailov VV
    J Phys Condens Matter; 2022 Sep; 34(47):. PubMed ID: 36137505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the GW Approximation with CCSD(T) for Charged Excitations Across the Oligoacenes.
    Rangel T; Hamed SM; Bruneval F; Neaton JB
    J Chem Theory Comput; 2016 Jun; 12(6):2834-42. PubMed ID: 27123935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplified GW/BSE Approach for Charged and Neutral Excitation Energies of Large Molecules and Nanomaterials.
    Cho Y; Bintrim SJ; Berkelbach TC
    J Chem Theory Comput; 2022 Jun; 18(6):3438-3446. PubMed ID: 35544591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Full-Frequency GW Calculations Using a Lanczos Method.
    Gao W; Tang Z; Zhao J; Chelikowsky JR
    Phys Rev Lett; 2024 Mar; 132(12):126402. PubMed ID: 38579203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation effects of π electrons on the band structures of conjugated polymers using the self-consistent GW approximation with vertex corrections.
    Chang YW; Jin BY
    J Chem Phys; 2012 Jan; 136(2):024110. PubMed ID: 22260567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Scaling Algorithms for
    Yeh CN; Morales MA
    J Chem Theory Comput; 2024 Apr; 20(8):3184-3198. PubMed ID: 38597496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The
    Golze D; Dvorak M; Rinke P
    Front Chem; 2019; 7():377. PubMed ID: 31355177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speeding up GW Calculations to Meet the Challenge of Large Scale Quasiparticle Predictions.
    Gao W; Xia W; Gao X; Zhang P
    Sci Rep; 2016 Nov; 6():36849. PubMed ID: 27833140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasiparticle Self-Consistent
    Friedrich C; Blügel S; Nabok D
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Models for the Investigation of Charged Defects in Solids: The Case of the VN
    Dovesi R; Gentile FS; Ferrari AM; Pascale F; Salustro S; D'Arco P
    J Phys Chem A; 2019 Jun; 123(22):4806-4815. PubMed ID: 31079454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GW Quasiparticle Energies and Bandgaps of Two-Dimensional Materials Immersed in Water.
    Kim SJ; Lebègue S; Ringe S; Kim H
    J Phys Chem Lett; 2022 Aug; 13(32):7574-7582. PubMed ID: 35948424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Many-body GW calculations of ground-state properties: quasi-2D electron systems and van der Waals forces.
    García-González P; Godby RW
    Phys Rev Lett; 2002 Feb; 88(5):056406. PubMed ID: 11863760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extrapolated Defect Transition Level in Two-Dimensional Materials: The Case of Charged Native Point Defects in Monolayer Hexagonal Boron Nitride.
    Liu X; Gao Z; Wang V; Luo Z; Lv B; Ding Z; Zhang Z
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):17055-17061. PubMed ID: 32167738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.