These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 38059848)

  • 1. Glycogen synthase kinase 3 signaling in neural regeneration in vivo.
    Zhang J; Yang SG; Zhou FQ
    J Mol Cell Biol; 2024 Apr; 15(12):. PubMed ID: 38059848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Akt-independent GSK3 inactivation downstream of PI3K signaling regulates mammalian axon regeneration.
    Zhang BY; Saijilafu ; Liu CM; Wang RY; Zhu Q; Jiao Z; Zhou FQ
    Biochem Biophys Res Commun; 2014 Jan; 443(2):743-8. PubMed ID: 24333443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1.
    Saijilafu ; Hur EM; Liu CM; Jiao Z; Xu WL; Zhou FQ
    Nat Commun; 2013; 4():2690. PubMed ID: 24162165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mTORC1 is necessary but mTORC2 and GSK3β are inhibitory for AKT3-induced axon regeneration in the central nervous system.
    Miao L; Yang L; Huang H; Liang F; Ling C; Hu Y
    Elife; 2016 Mar; 5():e14908. PubMed ID: 27026523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3β expression.
    Jiang JJ; Liu CM; Zhang BY; Wang XW; Zhang M; Saijilafu ; Zhang SR; Hall P; Hu YW; Zhou FQ
    Cell Death Dis; 2015 Aug; 6(8):e1865. PubMed ID: 26313916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergence of the mammalian target of rapamycin complex 1- and glycogen synthase kinase 3-β-signaling pathways regulates the innate inflammatory response.
    Wang H; Brown J; Gu Z; Garcia CA; Liang R; Alard P; Beurel E; Jope RS; Greenway T; Martin M
    J Immunol; 2011 May; 186(9):5217-26. PubMed ID: 21422248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained GSK3 activity markedly facilitates nerve regeneration.
    Gobrecht P; Leibinger M; Andreadaki A; Fischer D
    Nat Commun; 2014 Jul; 5():4561. PubMed ID: 25078444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GSK3β, but not GSK3α, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1.
    Ahn J; Jang J; Choi J; Lee J; Oh SH; Lee J; Yoon K; Kim S
    Stem Cells Dev; 2014 May; 23(10):1121-33. PubMed ID: 24397546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of Functional Nerve Regeneration by Inhibition of Microtubule Detyrosination.
    Gobrecht P; Andreadaki A; Diekmann H; Heskamp A; Leibinger M; Fischer D
    J Neurosci; 2016 Apr; 36(14):3890-902. PubMed ID: 27053198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activating the translational repressor 4E-BP or reducing S6K-GSK3β activity prevents accelerated axon growth induced by hyperactive mTOR in vivo.
    Gong X; Zhang L; Huang T; Lin TV; Miyares L; Wen J; Hsieh L; Bordey A
    Hum Mol Genet; 2015 Oct; 24(20):5746-58. PubMed ID: 26220974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GSK3β regulates AKT-induced central nervous system axon regeneration via an eIF2Bε-dependent, mTORC1-independent pathway.
    Guo X; Snider WD; Chen B
    Elife; 2016 Mar; 5():e11903. PubMed ID: 26974342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GSK3-CRMP2 signaling mediates axonal regeneration induced by
    Leibinger M; Hilla AM; Andreadaki A; Fischer D
    Commun Biol; 2019; 2():318. PubMed ID: 31453382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting CNS axon regeneration by harnessing antagonistic effects of GSK3 activity.
    Leibinger M; Andreadaki A; Golla R; Levin E; Hilla AM; Diekmann H; Fischer D
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5454-E5463. PubMed ID: 28630333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal deletion of GSK3β increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP2.
    Liz MA; Mar FM; Santos TE; Pimentel HI; Marques AM; Morgado MM; Vieira S; Sousa VF; Pemble H; Wittmann T; Sutherland C; Woodgett JR; Sousa MM
    BMC Biol; 2014 Jun; 12():47. PubMed ID: 24923837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of PBX2, a novel downstream target of mTORC1, is determined by GSK3 and PP1.
    Wada R; Fujinuma S; Nakatsumi H; Matsumoto M; Nakayama KI
    J Biochem; 2023 Feb; 173(2):129-138. PubMed ID: 36477205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially coordinated kinase signaling regulates local axon degeneration.
    Chen M; Maloney JA; Kallop DY; Atwal JK; Tam SJ; Baer K; Kissel H; Kaminker JS; Lewcock JW; Weimer RM; Watts RJ
    J Neurosci; 2012 Sep; 32(39):13439-53. PubMed ID: 23015435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycogen synthase kinase 3 beta (GSK3β) at the tip of neuronal development and regeneration.
    Seira O; Del Río JA
    Mol Neurobiol; 2014 Apr; 49(2):931-44. PubMed ID: 24158777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoactivation of Akt1/GSK3β Isoform-Specific Signaling Axis Promotes Pancreatic β-Cell Regeneration.
    Huang L; Jiang X; Gong L; Xing D
    J Cell Biochem; 2015 Aug; 116(8):1741-54. PubMed ID: 25736682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons.
    Christie KJ; Webber CA; Martinez JA; Singh B; Zochodne DW
    J Neurosci; 2010 Jul; 30(27):9306-15. PubMed ID: 20610765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of axon specification and neuronal disorders.
    Yoshimura T; Arimura N; Kaibuchi K
    Ann N Y Acad Sci; 2006 Nov; 1086():116-25. PubMed ID: 17185510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.