BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38059895)

  • 1. Record Resolution of Nanometal Surface Energy Transfer Optical Nanoruler Projects 3D Spatial Configuration of Aptamers on a Living Cell Membrane.
    Zhang Y; Fang X; Huang W; Li Q; Hu F; Liu H
    Nano Lett; 2023 Dec; 23(24):11968-11974. PubMed ID: 38059895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon Resonance Energy Transfer Nanoruler for Pinpointing Molecular Distance and Interaction on the Living Cell Membrane.
    Zhang Y; Fang X; Huang W; Li Q; Jiang H; Wang C; Liu H
    Nano Lett; 2023 Aug; 23(16):7750-7757. PubMed ID: 37387534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-nucleobase resolution of a surface energy transfer nanoruler for
    Zhang Y; Su M; Fang X; Huang W; Jiang H; Li Q; Hussain N; Ye M; Liu H; Tan W
    Chem Sci; 2023 Sep; 14(35):9560-9573. PubMed ID: 37712043
    [No Abstract]   [Full Text] [Related]  

  • 4. Single-Nucleobase-Resolved Nanoruler Determines the Surface Energy Transfer Radius on the Living Cell Membrane.
    Huang W; Zhang Y; Fang X; Li Q; Liu H
    Anal Chem; 2024 Apr; 96(13):5274-5281. PubMed ID: 38507515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation and Structural Modeling of CD71 as a Molecular Target for Cell-Specific Aptamer Binding.
    Wu X; Liu H; Han D; Peng B; Zhang H; Zhang L; Li J; Liu J; Cui C; Fang S; Li M; Ye M; Tan W
    J Am Chem Soc; 2019 Jul; 141(27):10760-10769. PubMed ID: 31185171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces.
    Chen Y; O'Donoghue MB; Huang YF; Kang H; Phillips JA; Chen X; Estevez MC; Yang CJ; Tan W
    J Am Chem Soc; 2010 Nov; 132(46):16559-70. PubMed ID: 21038856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rationally manipulating aptamer binding affinities in a stem-loop molecular beacon.
    Armstrong RE; Strouse GF
    Bioconjug Chem; 2014 Oct; 25(10):1769-76. PubMed ID: 25170558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand Dilution Analysis Facilitates Aptamer Binding Characterization at the Single-Molecule Level.
    Du Y; Lyu Y; Li S; Ding D; Chen J; Yang C; Sun Y; Qu F; Xiao Z; Jiang J; Tan W
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202215387. PubMed ID: 36479802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of minimal sequence for zearalenone aptamer by computational docking and application on an indirect competitive electrochemical aptasensor.
    Azri FA; Selamat J; Sukor R; Yusof NA; Raston NHA; Eissa S; Zourob M; Chinnappan R
    Anal Bioanal Chem; 2021 Jun; 413(15):3861-3872. PubMed ID: 34021369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application and evaluation of molecular docking for aptamer and small molecular interaction - A case study with tetracycline antibiotics.
    Liang G; Zhao J; Gao Y; Xie T; Zhen J; Pan L; Gong W
    Talanta; 2024 Jan; 266(Pt 1):124942. PubMed ID: 37459789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational preferences of modified nucleobases in RNA aptamers and their effect on Förster resonant energy transfer.
    Fischermeier D; Steinmetzger C; Höbartner C; Mitrić R
    Phys Chem Chem Phys; 2023 Dec; 26(1):241-248. PubMed ID: 38054366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aptamer Conjugated Gold Nanostar-Based Distance-Dependent Nanoparticle Surface Energy Transfer Spectroscopy for Ultrasensitive Detection and Inactivation of Corona Virus.
    Pramanik A; Gao Y; Patibandla S; Mitra D; McCandless MG; Fassero LA; Gates K; Tandon R; Ray PC
    J Phys Chem Lett; 2021 Mar; 12(8):2166-2171. PubMed ID: 33629859
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Escamilla-Gutiérrez A; Ribas-Aparicio RM; Córdova-Espinoza MG; Castelán-Vega JA
    Nucleosides Nucleotides Nucleic Acids; 2021; 40(8):798-807. PubMed ID: 34323642
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Morena F; Argentati C; Tortorella I; Emiliani C; Martino S
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beacons Contribute Valuable Empirical Information to Theoretical 3-D Aptamer-Peptide Binding.
    Bruno JG; Phillips T
    J Fluoresc; 2019 May; 29(3):711-717. PubMed ID: 31044327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction, docking study and molecular simulation of 3D DNA aptamers to their targets of endocrine disrupting chemicals.
    Zhang W; Yang F; Ou D; Lin G; Huang A; Liu N; Li P
    J Biomol Struct Dyn; 2019 Oct; 37(16):4274-4282. PubMed ID: 30477404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-aided design of aptamers for cytochrome p450.
    Shcherbinin DS; Gnedenko OV; Khmeleva SA; Usanov SA; Gilep AA; Yantsevich AV; Shkel TV; Yushkevich IV; Radko SP; Ivanov AS; Veselovsky AV; Archakov AI
    J Struct Biol; 2015 Aug; 191(2):112-9. PubMed ID: 26166326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of an RNA aptamer bound to thrombin.
    Long SB; Long MB; White RR; Sullenger BA
    RNA; 2008 Dec; 14(12):2504-12. PubMed ID: 18971322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer truncation strategy assisted by molecular docking and sensitive detection of T-2 toxin using SYBR Green I as a signal amplifier.
    Ma P; Ye H; Guo H; Ma X; Yue L; Wang Z
    Food Chem; 2022 Jul; 381():132171. PubMed ID: 35124487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding interactions of cationic gemini surfactants with gold nanoparticles-conjugated bovine serum albumin: A FRET/NSET, spectroscopic, and docking study.
    Halder S; Aggrawal R; Jana S; Saha SK
    J Photochem Photobiol B; 2021 Dec; 225():112351. PubMed ID: 34763228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.