These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38060139)
21. The type-III effectors-based multiplex PCR for detection of Singh D; Kesharwani AK; Avasthi AS 3 Biotech; 2023 Aug; 13(8):272. PubMed ID: 37449249 [TBL] [Abstract][Full Text] [Related]
22. Biological control of bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis. El-Hendawy HH; Osman ME; Sorour NM Microbiol Res; 2005; 160(4):343-52. PubMed ID: 16255138 [TBL] [Abstract][Full Text] [Related]
23. Identification of genes differentially expressed in cauliflower associated with resistance to Xanthomonas campestris pv. campestris. Jiang H; Song W; Li A; Yang X; Sun D Mol Biol Rep; 2011 Jan; 38(1):621-9. PubMed ID: 20397055 [TBL] [Abstract][Full Text] [Related]
24. Quantitative expression of microRNAs in Brassica oleracea infected with Xanthomonas campestris pv. campestris. Santos LS; Maximiano MR; Megias E; Pappas M; Ribeiro SG; Mehta A Mol Biol Rep; 2019 Jun; 46(3):3523-3529. PubMed ID: 30945070 [TBL] [Abstract][Full Text] [Related]
25. The Role of RelA and SpoT on ppGpp Production, Stress Response, Growth Regulation, and Pathogenicity in Xanthomonas campestris pv. Bai K; Yan H; Chen X; Lyu Q; Jiang N; Li J; Luo L Microbiol Spectr; 2021 Dec; 9(3):e0205721. PubMed ID: 34935430 [TBL] [Abstract][Full Text] [Related]
26. Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on arabidopsis revealed by association and reverse genetics. Guy E; Genissel A; Hajri A; Chabannes M; David P; Carrere S; Lautier M; Roux B; Boureau T; Arlat M; Poussier S; Noël LD mBio; 2013 Jun; 4(3):e00538-12. PubMed ID: 23736288 [TBL] [Abstract][Full Text] [Related]
27. The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). Wiggerich HG; Pühler A Microbiology (Reading); 2000 May; 146 ( Pt 5)():1053-1060. PubMed ID: 10832632 [TBL] [Abstract][Full Text] [Related]
29. The type VI secretion system of Stenotrophomonas rhizophila CFBP13503 limits the transmission of Xanthomonas campestris pv. campestris 8004 from radish seeds to seedlings. Garin T; Brin C; Préveaux A; Brault A; Briand M; Simonin M; Barret M; Journet L; Sarniguet A Mol Plant Pathol; 2024 Jan; 25(1):e13412. PubMed ID: 38279854 [TBL] [Abstract][Full Text] [Related]
30. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Romero FM; Marina M; Pieckenstain FL Res Microbiol; 2016 Apr; 167(3):222-33. PubMed ID: 26654914 [TBL] [Abstract][Full Text] [Related]
31. Cruciferous Weeds Do Not Act as Major Reservoirs of Inoculum for Black Rot Outbreaks in New York State. Lange HW; Tancos MA; Smart CD Plant Dis; 2022 Jan; 106(1):174-181. PubMed ID: 34353128 [TBL] [Abstract][Full Text] [Related]
33. Bio-based products control black rot (Xanthomonas campestris pv. campestris) and increase the nutraceutical and antioxidant components in kale. Nuñez AMP; Rodríguez GAA; Monteiro FP; Faria AF; Silva JCP; Monteiro ACA; Carvalho CV; Gomes LAA; Souza RM; de Souza JT; Medeiros FHV Sci Rep; 2018 Jul; 8(1):10199. PubMed ID: 29977077 [TBL] [Abstract][Full Text] [Related]
34. Endophytes from Gnetum gnemon L. can protect seedlings against the infection of phytopathogenic bacterium Ralstonia solanacearum as well as promote plant growth in tomato. Agarwal H; Dowarah B; Baruah PM; Bordoloi KS; Krishnatreya DB; Agarwala N Microbiol Res; 2020 Sep; 238():126503. PubMed ID: 32497966 [TBL] [Abstract][Full Text] [Related]
35. First Report of Severe Outbreaks of Bacterial Leaf Spot of Leafy Brassica Greens Caused by Xanthomonas campestris pv. campestris in South Carolina. Wechter WP; Keinath AP; Smith JP; Farnham MW Plant Dis; 2008 Jul; 92(7):1134. PubMed ID: 30769514 [TBL] [Abstract][Full Text] [Related]
36. Unraveling the metabolic response of Brassica oleracea exposed to Xanthomonas campestris pv. campestris. Tortosa M; Cartea ME; Rodríguez VM; Velasco P J Sci Food Agric; 2018 Aug; 98(10):3675-3683. PubMed ID: 29315593 [TBL] [Abstract][Full Text] [Related]
37. WxcX is involved in bacterial attachment and virulence in Xanthomonas campestris pv. campestris. Liu YF; Liao CT; Chiang YC; Li CE; Hsiao YM J Basic Microbiol; 2018 May; 58(5):403-413. PubMed ID: 29504631 [TBL] [Abstract][Full Text] [Related]
38. Diffusible signal factor primes plant immunity against Zhao Q; Liu F; Song C; Zhai T; He Z; Ma L; Zhao X; Jia Z; Song S Front Cell Infect Microbiol; 2023; 13():1203582. PubMed ID: 37404719 [TBL] [Abstract][Full Text] [Related]
39. Dissecting quantitative resistance to Xanthomonas campestris pv. campestris in leaves of Brassica oleracea by QTL analysis. Iglesias-Bernabé L; Madloo P; Rodríguez VM; Francisco M; Soengas P Sci Rep; 2019 Feb; 9(1):2015. PubMed ID: 30765761 [TBL] [Abstract][Full Text] [Related]
40. Genetic and pathogenic variability of Indian strains of Xanthomonas campestris pv. campestris causing black rot disease in crucifers. Singh D; Dhar S; Yadava DK Curr Microbiol; 2011 Dec; 63(6):551-60. PubMed ID: 21956666 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]