These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38060442)

  • 1. Protocol for preparation of LiCl-based ultra-hygroscopic curdlan heat exchanger for dehumidification.
    Luo Z; Wang J; Pan Y; Gao P; Zhang H; Wang R
    STAR Protoc; 2023 Dec; 4(4):102763. PubMed ID: 38060442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for atmospheric water harvesting using
    Li C; Wang J; Deng C; Wang R; Zhang H
    STAR Protoc; 2022 Dec; 3(4):101780. PubMed ID: 36317176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol to develop a moisture-desorptive passive cooling system for electronics thermal management.
    Sui Z; Sui Y; Ding Z; Lin H; Li F; Wu W
    STAR Protoc; 2024 Jun; 5(2):103033. PubMed ID: 38652663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile and efficient chitosan-based hygroscopic aerogel for air dehumidification.
    Han X; Xue Y; Lou R; Ding S; Wang S
    Int J Biol Macromol; 2023 Nov; 251():126191. PubMed ID: 37573918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Is the lithium chloride-coated heat and moisture exchanger a danger for patients?].
    Rathgeber J; Zielmann S; Kietzmann D; Züchner K; Warnecke G
    Anaesthesist; 1992 Apr; 41(4):204-7. PubMed ID: 1317137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.
    Tu YD; Wang RZ; Ge TS; Zheng X
    Sci Rep; 2017 Jan; 7():40437. PubMed ID: 28079171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Water Sorption Performance of Polyacrylamide & Glass Fiber Paper Composites: Investigation and Comparison of Application in Desiccant Wheels.
    Liu Y; Liu Z; Wang Z; Sun W
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol to fabricate ionic hydrogel with ultra-stretchable and fast self-healing ability in cryogenic environments.
    Wang C; Liu Y; Li Z
    STAR Protoc; 2023 Mar; 4(1):102045. PubMed ID: 36853710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-fouling rotating polymer-based heat exchanger for zero liquid discharge humidification-dehumidification desalination.
    Ghosh DP; Hassan M; Dennis SJ; Sharma D; Elhashimi-Khalifa MA; Abbasi B
    Water Res; 2024 Jul; 258():121749. PubMed ID: 38762912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-exchanging dialysis as an effective method for protein entrapment in curdlan hydrogel.
    Klimek K; Benko A; Pałka K; Ludwiczuk A; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110025. PubMed ID: 31546453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing Salt Leakage Mitigation and Comparing Sorption-Desorption Characteristics of Polyacrylamide-Based Hydrogels.
    Liu Y; Liu Z; Qie Z; Wang Z; Sun W
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medical Use of Polycatecholamines + Oxidoreductases-Modified Curdlan Hydrogels-Perspectives.
    Michalicha A; Przekora A; Stefaniuk D; Jaszek M; Matuszewska A; Belcarz A
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of curdlan to controlled drug delivery. I. The preparation and evaluation of theophylline-containing curdlan tablets.
    Kanke M; Koda K; Koda Y; Katayama H
    Pharm Res; 1992 Mar; 9(3):414-8. PubMed ID: 1614977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy performance of independent air dehumidification systems with energy recovery measures.
    Zhang LZ
    Energy (Oxf); 2006 Jul; 31(8):1228-1242. PubMed ID: 32288041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of water distribution in xanthan-curdlan hydrogel complex using magnetic resonance imaging, nuclear magnetic resonance relaxometry, rheology, and scanning electron microscopy.
    Williams PD; Oztop MH; McCarthy MJ; McCarthy KL; Lo YM
    J Food Sci; 2011 Aug; 76(6):E472-8. PubMed ID: 22417499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides.
    Kumagai Y; Okuyama M; Kimura A
    Carbohydr Polym; 2016 Aug; 146():396-401. PubMed ID: 27112889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifracture, Antibacterial, and Anti-inflammatory Hydrogels Consisting of Silver-Embedded Curdlan Nanofibrils.
    Lin M; Long H; Liang M; Chu B; Ren Z; Zhou P; Wu C; Liu Z; Wang Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):36747-36756. PubMed ID: 34325510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of curdlan to controlled drug delivery. III. Drug release from sustained release suppositories in vitro.
    Kanke M; Tanabe E; Katayama H; Koda Y; Yoshitomi H
    Biol Pharm Bull; 1995 Aug; 18(8):1154-8. PubMed ID: 8535416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curdlan, a (1----3)-beta-D-glucan from Alcaligenes faecalis var. myxogenes IFO13140, activates the alternative complement pathway by heat treatment.
    Matsushita M
    Immunol Lett; 1990 Oct; 26(1):95-7. PubMed ID: 2276766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2).
    Na K; Park KH; Kim SW; Bae YH
    J Control Release; 2000 Nov; 69(2):225-36. PubMed ID: 11064130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.