These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 3806051)

  • 1. Host modification of the adherence properties of Chlamydia trachomatis.
    Bose SK; Goswami PC
    J Gen Microbiol; 1986 Jun; 132(6):1631-9. PubMed ID: 3806051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adherence of multiple serovars of Chlamydia trachomatis to a common receptor on HeLa and McCoy cells is mediated by thermolabile protein(s).
    Vretou E; Goswami PC; Bose SK
    J Gen Microbiol; 1989 Dec; 135(12):3229-37. PubMed ID: 2636258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attachment and internalization of a Chlamydia trachomatis lymphogranuloma venereum strain by McCoy cells: kinetics of infectivity and effect of lectins and carbohydrates.
    Söderlund G; Kihlström E
    Infect Immun; 1983 Dec; 42(3):930-5. PubMed ID: 6642670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host passage-dependent wheat germ agglutinin-binding proteins of Chlamydia trachomatis.
    Goswami PC; Vretou E; Bose SK
    FEMS Microbiol Lett; 1991 Jun; 65(1):53-6. PubMed ID: 1874403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of lectins, hexoses, and neuraminidase on the association of purified elementary bodies of Chlamydia trachomatis UW-31 with HeLa cells.
    Bose SK; Smith GB; Paul RG
    Infect Immun; 1983 Jun; 40(3):1060-7. PubMed ID: 6687878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of adherence and growth of Chlamydia trachomatis by estrogen treatment of HeLa cells.
    Bose SK; Goswami PC
    Infect Immun; 1986 Sep; 53(3):646-50. PubMed ID: 3744558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive heterogeneity of the protein composition of Chlamydia trachomatis following serial passage in two different cell lines.
    Goswami PC; Vretou E; Bose SK
    J Gen Microbiol; 1990 Aug; 136(8):1623-9. PubMed ID: 2262794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate.
    Taraktchoglou M; Pacey AA; Turnbull JE; Eley A
    Infect Immun; 2001 Feb; 69(2):968-76. PubMed ID: 11159992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis.
    Ward ME; Murray A
    J Gen Microbiol; 1984 Jul; 130(7):1765-80. PubMed ID: 6470672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A heat-labile protein of Chlamydia trachomatis binds to HeLa cells and inhibits the adherence of chlamydiae.
    Joseph TD; Bose SK
    Proc Natl Acad Sci U S A; 1991 May; 88(9):4054-8. PubMed ID: 2023955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eucaryotic cells.
    Majeed M; Kihlström E
    Infect Immun; 1991 Dec; 59(12):4465-72. PubMed ID: 1937805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of lectin-binding proteins in Chlamydia species.
    Swanson AF; Kuo CC
    Infect Immun; 1990 Feb; 58(2):502-7. PubMed ID: 2298489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Chlamydia trachomatis with human genital epithelium in culture.
    Moorman DR; Sixbey JW; Wyrick PB
    J Gen Microbiol; 1986 Apr; 132(4):1055-67. PubMed ID: 3760816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface components of HeLa cells that inhibit cytadherence of Chlamydia trachomatis.
    Joseph TD; Bose SK
    FEMS Microbiol Lett; 1992 Mar; 70(2):177-80. PubMed ID: 1587463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wheat germ agglutinin blockage of chlamydial attachment sites: antagonism by N-acetyl-D-glucosamine.
    Levy NJ
    Infect Immun; 1979 Sep; 25(3):946-53. PubMed ID: 500195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of Chlamydia trachomatis with mammalian and cultured insect cells lacking putative chlamydial receptors.
    Allan I; Pearce JH
    Microb Pathog; 1987 Jan; 2(1):63-70. PubMed ID: 3507553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of alpha/beta interferon and dependent nitric oxide synthesis during Chlamydia trachomatis infection of McCoy cells in the absence of exogenous cytokine.
    Devitt A; Lund PA; Morris AG; Pearce JH
    Infect Immun; 1996 Oct; 64(10):3951-6. PubMed ID: 8926054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: the role of calmodulin.
    Murray A; Ward ME
    J Gen Microbiol; 1984 Jan; 130(1):193-201. PubMed ID: 6423768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between a trachoma strain of Chlamydia trachomatis and mouse fibroblasts (McCoy cells) in the absence of centrifugation.
    Lee CK
    Infect Immun; 1981 Feb; 31(2):584-91. PubMed ID: 7216462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of Galanthus nivalis lectin to Chlamydia trachomatis and inhibition of in vitro infection.
    Amin K; Beillevaire D; Mahmoud E; Hammar L; Mårdh PA; Fröman G
    APMIS; 1995 Oct; 103(10):714-20. PubMed ID: 8534430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.