These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 38060592)

  • 1. multi-GPA-Tree: Statistical approach for pleiotropy informed and functional annotation tree guided prioritization of GWAS results.
    Khatiwada A; Yilmaz AS; Wolf BJ; Pietrzak M; Chung D
    PLoS Comput Biol; 2023 Dec; 19(12):e1011686. PubMed ID: 38060592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPA-Tree: statistical approach for functional-annotation-tree-guided prioritization of GWAS results.
    Khatiwada A; Wolf BJ; Yilmaz AS; Ramos PS; Pietrzak M; Lawson A; Hunt KJ; Kim HJ; Chung D
    Bioinformatics; 2022 Jan; 38(4):1067-1074. PubMed ID: 34849578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation.
    Chung D; Yang C; Li C; Gelernter J; Zhao H
    PLoS Genet; 2014 Nov; 10(11):e1004787. PubMed ID: 25393678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data.
    Masotti M; Guo B; Wu B
    Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture.
    Chung D; Kim HJ; Zhao H
    PLoS Comput Biol; 2017 Feb; 13(2):e1005388. PubMed ID: 28212402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LPG: A four-group probabilistic approach to leveraging pleiotropy in genome-wide association studies.
    Yang Y; Dai M; Huang J; Lin X; Yang C; Chen M; Liu J
    BMC Genomics; 2018 Jun; 19(1):503. PubMed ID: 29954342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle.
    Cai Z; Dusza M; Guldbrandtsen B; Lund MS; Sahana G
    Genet Sel Evol; 2020 Apr; 52(1):19. PubMed ID: 32264818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging existing GWAS summary data of genetically correlated and uncorrelated traits to improve power for a new GWAS.
    Xue H; Wu C; Pan W
    Genet Epidemiol; 2020 Oct; 44(7):717-732. PubMed ID: 32677173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate genome-wide associations for immune traits in two maternal pig lines.
    Roth K; Pröll-Cornelissen MJ; Henne H; Appel AK; Schellander K; Tholen E; Große-Brinkhaus C
    BMC Genomics; 2023 Aug; 24(1):492. PubMed ID: 37641029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing Genetic Pleiotropy with GWAS Summary Statistics for Marginal and Conditional Analyses.
    Deng Y; Pan W
    Genetics; 2017 Dec; 207(4):1285-1299. PubMed ID: 28971959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. graph-GPA 2.0: improving multi-disease genetic analysis with integration of functional annotation data.
    Deng Q; Gupta A; Jeon H; Nam JH; Yilmaz AS; Chang W; Pietrzak M; Li L; Kim HJ; Chung D
    Front Genet; 2023; 14():1079198. PubMed ID: 37501720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating and testing pleiotropy of single genetic variant for two quantitative traits.
    Zhang Q; Feitosa M; Borecki IB
    Genet Epidemiol; 2014 Sep; 38(6):523-30. PubMed ID: 25044106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging auxiliary data from arbitrary distributions to boost GWAS discovery with Flexible cFDR.
    Hutchinson A; Reales G; Willis T; Wallace C
    PLoS Genet; 2021 Oct; 17(10):e1009853. PubMed ID: 34669738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving SNP prioritization and pleiotropic architecture estimation by incorporating prior knowledge using graph-GPA.
    Kim HJ; Yu Z; Lawson A; Zhao H; Chung D
    Bioinformatics; 2018 Jun; 34(12):2139-2141. PubMed ID: 29432514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trait selection strategy in multi-trait GWAS: Boosting SNP discoverability.
    Suzuki Y; Ménager H; Brancotte B; Vernet R; Nerin C; Boetto C; Auvergne A; Linhard C; Torchet R; Lechat P; Troubat L; Cho MH; Bouzigon E; Aschard H; Julienne H
    HGG Adv; 2024 Jul; 5(3):100319. PubMed ID: 38872309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia.
    Yoshida GM; Yáñez JM
    BMC Genomics; 2021 Jan; 22(1):57. PubMed ID: 33451291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-Phenotype Association Analysis Using Summary Statistics from GWAS.
    Li X; Zhu X
    Methods Mol Biol; 2017; 1666():455-467. PubMed ID: 28980259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics.
    Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P
    BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.