These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38060626)

  • 1. Collective production of hydrogen sulfide gas enables budding yeast lacking MET17 to overcome their metabolic defect.
    Sonal ; Yuan AE; Yang X; Shou W
    PLoS Biol; 2023 Dec; 21(12):e3002439. PubMed ID: 38060626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the illusion of auxotrophy: met15Δ yeast cells can grow on inorganic sulfur, thanks to the previously uncharacterized homocysteine synthase Yll058w.
    Van Oss SB; Parikh SB; Castilho Coelho N; Wacholder A; Belashov I; Zdancewicz S; Michaca M; Xu J; Kang YP; Ward NP; Yoon SJ; McCourt KM; McKee J; Ideker T; VanDemark AP; DeNicola GM; Carvunis AR
    J Biol Chem; 2022 Dec; 298(12):102697. PubMed ID: 36379252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy.
    Yu JSL; Heineike BM; Hartl J; Aulakh SK; Correia-Melo C; Lehmann A; Lemke O; Agostini F; Lee CT; Demichev V; Messner CB; Mülleder M; Ralser M
    PLoS Biol; 2022 Dec; 20(12):e3001912. PubMed ID: 36455053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The GLO1 Gene Is Required for Full Activity of O-Acetyl Homoserine Sulfhydrylase Encoded by MET17.
    Kinzurik MI; Ly K; David KM; Gardner RC; Fedrizzi B
    ACS Chem Biol; 2017 Feb; 12(2):414-421. PubMed ID: 27935278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide.
    Kinzurik MI; Herbst-Johnstone M; Gardner RC; Fedrizzi B
    Food Chem; 2016 Oct; 209():341-7. PubMed ID: 27173572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel biosynthetic pathway for sulfur amino acids in Cryptococcus neoformans.
    Toh-E A; Ohkusu M; Shimizu K; Ishiwada N; Watanabe A; Kamei K
    Curr Genet; 2018 Jun; 64(3):681-696. PubMed ID: 29159425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast TUM1 affects production of hydrogen sulfide from cysteine treatment during fermentation.
    Huang CW; Walker ME; Fedrizzi B; Roncoroni M; Gardner RC; Jiranek V
    FEMS Yeast Res; 2016 Dec; 16(8):. PubMed ID: 27915245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.
    Chen Z; Zhang X; Li H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217845
    [No Abstract]   [Full Text] [Related]  

  • 9. Human β-defensin-2 production from S. cerevisiae using the repressible MET17 promoter.
    Møller TS; Hay J; Saxton MJ; Bunting K; Petersen EI; Kjærulff S; Finnis CJ
    Microb Cell Fact; 2017 Jan; 16(1):11. PubMed ID: 28100236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae.
    Spiropoulos A; Bisson LF
    Appl Environ Microbiol; 2000 Oct; 66(10):4421-6. PubMed ID: 11010893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate assimilation regulates hydrogen sulfide production independent of lifespan and reactive oxygen species under methionine restriction condition in yeast.
    Choi KM; Kim S; Kim S; Lee HM; Kaya A; Chun BH; Lee YK; Park TS; Lee CK; Eyun SI; Lee BC
    Aging (Albany NY); 2019 Jun; 11(12):4254-4273. PubMed ID: 31254461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation.
    Walker ME; Zhang J; Sumby KM; Lee A; Houlès A; Li S; Jiranek V
    Yeast; 2021 Jun; 38(6):367-381. PubMed ID: 33560525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability.
    Mendes-Ferreira A; Barbosa C; Jimenez-Marti E; Del Olmo ML; Mendes-Faia A
    J Microbiol Biotechnol; 2010 Sep; 20(9):1314-21. PubMed ID: 20890097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the sulphate assimilation pathway in utilization of glutathione as a sulphur source by Saccharomyces cerevisiae.
    Miyake T; Sammoto H; Kanayama M; Tomochika Ki; Shinoda S; Ono Bi
    Yeast; 1999 Oct; 15(14):1449-57. PubMed ID: 10514563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae.
    Chang EC; Kosman DJ
    J Bacteriol; 1990 Apr; 172(4):1840-5. PubMed ID: 2180907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation.
    Huang CW; Walker ME; Fedrizzi B; Gardner RC; Jiranek V
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28810701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution-based strategy to generate non-genetically modified organisms Saccharomyces cerevisiae strains impaired in sulfate assimilation pathway.
    De Vero L; Solieri L; Giudici P
    Lett Appl Microbiol; 2011 Nov; 53(5):572-5. PubMed ID: 21883319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel mechanism regulates H(2) S and SO(2) production in Saccharomyces cerevisiae.
    Yoshida S; Imoto J; Minato T; Oouchi R; Kamada Y; Tomita M; Soga T; Yoshimoto H
    Yeast; 2011 Feb; 28(2):109-21. PubMed ID: 20936605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.
    Calderwood A; Kopriva S
    Nitric Oxide; 2014 Sep; 41():72-8. PubMed ID: 24582856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen.
    Jiranek V; Langridge P; Henschke PA
    Appl Environ Microbiol; 1995 Feb; 61(2):461-7. PubMed ID: 7574581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.