These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38060676)
1. mRNA cleavage by 21-nucleotide phasiRNAs determines temperature-sensitive male sterility in rice. Shi C; Zou W; Zhu Y; Zhang J; Teng C; Wei H; He H; He W; Liu X; Zhang B; Zhang H; Leng Y; Guo M; Wang X; Chen W; Zhang Z; Qian H; Cui Y; Jiang H; Chen Y; Fei Q; Meyers BC; Liang W; Qian Q; Shang L Plant Physiol; 2024 Mar; 194(4):2354-2371. PubMed ID: 38060676 [TBL] [Abstract][Full Text] [Related]
2. Temperature-sensitive male sterility in rice determined by the roles of AGO1d in reproductive phasiRNA biogenesis and function. Shi C; Zhang J; Wu B; Jouni R; Yu C; Meyers BC; Liang W; Fei Q New Phytol; 2022 Nov; 236(4):1529-1544. PubMed ID: 36031742 [TBL] [Abstract][Full Text] [Related]
3. Mobile ARGONAUTE 1d binds 22-nt miRNAs to generate phasiRNAs important for low-temperature male fertility in rice. Si F; Luo H; Yang C; Gong J; Yan B; Liu C; Song X; Cao X Sci China Life Sci; 2023 Feb; 66(2):197-208. PubMed ID: 36239908 [TBL] [Abstract][Full Text] [Related]
4. 21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells. Jiang P; Lian B; Liu C; Fu Z; Shen Y; Cheng Z; Qi Y Nat Commun; 2020 Oct; 11(1):5191. PubMed ID: 33060587 [TBL] [Abstract][Full Text] [Related]
5. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Fan Y; Yang J; Mathioni SM; Yu J; Shen J; Yang X; Wang L; Zhang Q; Cai Z; Xu C; Li X; Xiao J; Meyers BC; Zhang Q Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15144-15149. PubMed ID: 27965387 [TBL] [Abstract][Full Text] [Related]
6. Premeiotic 24-nt phasiRNAs are present in the Zhan J; Bélanger S; Lewis S; Teng C; McGregor M; Beric A; Schon MA; Nodine MD; Meyers BC Proc Natl Acad Sci U S A; 2024 May; 121(21):e2402285121. PubMed ID: 38739785 [TBL] [Abstract][Full Text] [Related]
7. Degradome sequencing-based identification of phasiRNAs biogenesis pathways in Oryza sativa. Yu L; Guo R; Jiang Y; Ye X; Yang Z; Meng Y; Shao C BMC Genomics; 2021 Jan; 22(1):93. PubMed ID: 33516199 [TBL] [Abstract][Full Text] [Related]
8. Cis-directed cleavage and nonstoichiometric abundances of 21-nucleotide reproductive phased small interfering RNAs in grasses. Tamim S; Cai Z; Mathioni SM; Zhai J; Teng C; Zhang Q; Meyers BC New Phytol; 2018 Nov; 220(3):865-877. PubMed ID: 29708601 [TBL] [Abstract][Full Text] [Related]
9. Premeiotic, 24-Nucleotide Reproductive PhasiRNAs Are Abundant in Anthers of Wheat and Barley But Not Rice and Maize. Bélanger S; Pokhrel S; Czymmek K; Meyers BC Plant Physiol; 2020 Nov; 184(3):1407-1423. PubMed ID: 32917771 [TBL] [Abstract][Full Text] [Related]
10. Spatial distribution of three ARGONAUTEs regulates the anther phasiRNA pathway. Tamotsu H; Koizumi K; Briones AV; Komiya R Nat Commun; 2023 Jun; 14(1):3333. PubMed ID: 37286636 [TBL] [Abstract][Full Text] [Related]
11. Widespread occurrence of microRNA-mediated target cleavage on membrane-bound polysomes. Yang X; You C; Wang X; Gao L; Mo B; Liu L; Chen X Genome Biol; 2021 Jan; 22(1):15. PubMed ID: 33402203 [TBL] [Abstract][Full Text] [Related]
12. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways. Fei Q; Yang L; Liang W; Zhang D; Meyers BC J Exp Bot; 2016 Nov; 67(21):6037-6049. PubMed ID: 27702997 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9-targeted mutagenesis of TaDCL4, TaDCL5 and TaRDR6 induces male sterility in common wheat. Zhang R; Zhang S; Li J; Gao J; Song G; Li W; Geng S; Liu C; Lin Y; Li Y; Li G Plant Biotechnol J; 2023 Apr; 21(4):839-853. PubMed ID: 36597709 [TBL] [Abstract][Full Text] [Related]
14. A microRNA biogenesis-like pathway for producing phased small interfering RNA from a long non-coding RNA in rice. Huang J; Wang R; Dai X; Feng J; Zhang H; Zhao PX J Exp Bot; 2019 Mar; 70(6):1767-1774. PubMed ID: 30775774 [TBL] [Abstract][Full Text] [Related]
15. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. Komiya R J Plant Res; 2017 Jan; 130(1):17-23. PubMed ID: 27900550 [TBL] [Abstract][Full Text] [Related]
16. miR2118-dependent U-rich phasiRNA production in rice anther wall development. Araki S; Le NT; Koizumi K; Villar-Briones A; Nonomura KI; Endo M; Inoue H; Saze H; Komiya R Nat Commun; 2020 Jun; 11(1):3115. PubMed ID: 32561756 [TBL] [Abstract][Full Text] [Related]
17. Identification of phasiRNAs in wild rice (Oryza rufipogon). Liu Y; Wang Y; Zhu QH; Fan L Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23733069 [TBL] [Abstract][Full Text] [Related]
18. Evolution and diversification of reproductive phased small interfering RNAs in Oryza species. Tian P; Zhang X; Xia R; Liu Y; Wang M; Li B; Liu T; Shi J; Wing RA; Meyers BC; Chen M New Phytol; 2021 Mar; 229(5):2970-2983. PubMed ID: 33111313 [TBL] [Abstract][Full Text] [Related]
19. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers. Zhou X; Huang K; Teng C; Abdelgawad A; Batish M; Meyers BC; Walbot V New Phytol; 2022 Jul; 235(2):488-501. PubMed ID: 35451503 [TBL] [Abstract][Full Text] [Related]
20. Spatiotemporal regulation and roles of reproductive phasiRNAs in plants. Komiya R Genes Genet Syst; 2022 Feb; 96(5):209-215. PubMed ID: 34759068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]