These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38060811)

  • 1. Predicting Long-Term Stability of an Oral Delivered Antibody Drug Product with Accelerated Stability Assessment Program Modeling.
    Dai L; Davis J; Nagapudi K; Mantik P; Zhang K; Pellett JD; Wei B
    Mol Pharm; 2024 Jan; 21(1):325-332. PubMed ID: 38060811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of the Accelerated Stability Assessment Program (ASAP) to quality by design (QbD) for drug product stability.
    Waterman KC
    AAPS PharmSciTech; 2011 Sep; 12(3):932-7. PubMed ID: 21748541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated Predictive Stability Study of a Pediatric Drug Product for a Supplemental New Drug Application.
    Rakers V; Wang J; Kou D
    AAPS PharmSciTech; 2024 Jun; 25(5):128. PubMed ID: 38844721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated Stability Modeling for Peptides: a Case Study with Bacitracin.
    Waterman R; Lewis J; Waterman KC
    AAPS PharmSciTech; 2017 Jul; 18(5):1692-1698. PubMed ID: 27714699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated shelf life modeling of appearance change in drug products using ASAP
    Flavier K; McLellan J; Botoy T; Waterman KC
    Pharm Dev Technol; 2022 Jul; 27(6):740-748. PubMed ID: 35950863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated Stability Assessment Program to Predict Long-term Stability of Drugs: Application to Ascorbic Acid and to a Cyclic Hexapeptide.
    Legrand P; Gahoual R; Houzé P; Dufaÿ S
    AAPS PharmSciTech; 2021 Sep; 22(7):234. PubMed ID: 34498167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of drug substance predicted chemical stability with ICH compliant stability studies.
    Williams HE; Bright J; Roddy E; Poulton A; Cosgrove SD; Turner F; Harrison P; Brookes A; MacDougall E; Abbott A; Gordon C
    Drug Dev Ind Pharm; 2019 Mar; 45(3):379-386. PubMed ID: 30395722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Magnesium Stearate Content: Modeling of Drug Degradation Using a Modified Arrhenius Equation.
    Tamura K; Ono M; Kawabe T; Yonemochi E
    Chem Pharm Bull (Tokyo); 2020; 68(11):1049-1054. PubMed ID: 33132371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.
    Fan Z; Zhang L
    J Biopharm Stat; 2015; 25(2):307-16. PubMed ID: 25358076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies.
    Brader ML; Estey T; Bai S; Alston RW; Lucas KK; Lantz S; Landsman P; Maloney KM
    Mol Pharm; 2015 Apr; 12(4):1005-17. PubMed ID: 25687223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmaceutical solid-state kinetic stability investigation by using moisture-modified Arrhenius equation and JMP statistical software.
    Fu M; Perlman M; Lu Q; Varga C
    J Pharm Biomed Anal; 2015 Mar; 107():370-7. PubMed ID: 25656488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian Approach to Kinetic Modeling of Accelerated Stability Studies and Shelf Life Determination.
    Chau J; Altan S; Burggraeve A; Coppenolle H; Kifle YW; Prokopcova H; Van Daele T; Sterckx H
    AAPS PharmSciTech; 2023 Nov; 24(8):250. PubMed ID: 38036798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Solid State Characterization in Predicting Stability of Solid Dosage Forms.
    Szabó P; Zelko R; Antal I
    Curr Pharm Des; 2016; 22(32):5019-5028. PubMed ID: 27464730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved protocol and data analysis for accelerated shelf-life estimation of solid dosage forms.
    Waterman KC; Carella AJ; Gumkowski MJ; Lukulay P; MacDonald BC; Roy MC; Shamblin SL
    Pharm Res; 2007 Apr; 24(4):780-90. PubMed ID: 17372701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions.
    Brummitt RK; Nesta DP; Roberts CJ
    J Pharm Sci; 2011 Oct; 100(10):4234-43. PubMed ID: 21671226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of biophysical characterization techniques in predicting monoclonal antibody stability.
    Thiagarajan G; Semple A; James JK; Cheung JK; Shameem M
    MAbs; 2016; 8(6):1088-97. PubMed ID: 27210456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using accelerated drug stability results to inform long-term studies in shelf life determination.
    Faya P; Seaman JW; Stamey JD
    Stat Med; 2018 Jul; 37(17):2599-2615. PubMed ID: 29766536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the Long-Term Dissolution Performance of an Immediate-Release Tablet Using Accelerated Stability Studies.
    Scrivens G
    J Pharm Sci; 2019 Jan; 108(1):506-515. PubMed ID: 30595168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humidity-corrected Arrhenius equation: The reference condition approach.
    Naveršnik K; Jurečič R
    Int J Pharm; 2016 Mar; 500(1-2):360-5. PubMed ID: 26802498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Mechanism of Glass Delamination in Type 1A Borosilicate Vials Containing Frozen Protein Formulations.
    Jiang G; Goss M; Li G; Jing W; Shen H; Fujimori K; Le L; Wong L; Wen ZQ; Nashed-Samuel Y; Riker K; Germansderfer A; Tsang P; Ricci M
    PDA J Pharm Sci Technol; 2013; 67(4):323-35. PubMed ID: 23872443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.