These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38061056)
21. Binary Au-Cu Reaction Sites Decorated ZnO for Selective Methane Oxidation to C1 Oxygenates with Nearly 100% Selectivity at Room Temperature. Luo L; Gong Z; Xu Y; Ma J; Liu H; Xing J; Tang J J Am Chem Soc; 2022 Jan; 144(2):740-750. PubMed ID: 34928583 [TBL] [Abstract][Full Text] [Related]
22. Insight into selectivity of photocatalytic methane oxidation to formaldehyde on tungsten trioxide. Fan Y; Jiang Y; Lin H; Li J; Xie Y; Chen A; Li S; Han D; Niu L; Tang Z Nat Commun; 2024 Jun; 15(1):4679. PubMed ID: 38824163 [TBL] [Abstract][Full Text] [Related]
23. Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting. Zhang J; Liu Z; Liu Z ACS Appl Mater Interfaces; 2016 Apr; 8(15):9684-91. PubMed ID: 27032422 [TBL] [Abstract][Full Text] [Related]
24. Engineering the Near-Surface Structure of WO Feng X; Sun T; Feng X; Chen L; Yang Y; Zhang F ACS Appl Mater Interfaces; 2022 Dec; 14(49):54769-54780. PubMed ID: 36469043 [TBL] [Abstract][Full Text] [Related]
25. Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. Zhao E; Du K; Yin PF; Ran J; Mao J; Ling T; Qiao SZ Adv Sci (Weinh); 2022 Jan; 9(1):e2104363. PubMed ID: 34850603 [TBL] [Abstract][Full Text] [Related]
26. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting. Feng X; Chen Y; Qin Z; Wang M; Guo L ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739 [TBL] [Abstract][Full Text] [Related]
27. Sonochemical-driven ultrafast facile synthesis of WO Soltani T; Tayyebi A; Lee BK Ultrason Sonochem; 2019 Jan; 50():230-238. PubMed ID: 30270006 [TBL] [Abstract][Full Text] [Related]
28. Improved Photoelectrochemical Performance of WO Nomellini C; Polo A; Mesa CA; Pastor E; Marra G; Grigioni I; Dozzi MV; Giménez S; Selli E ACS Appl Mater Interfaces; 2023 Nov; 15(45):52436-47. PubMed ID: 37921705 [TBL] [Abstract][Full Text] [Related]
29. Synergistic Integration of AuCu Co-Catalyst with Oxygen Vacancies on TiO Jiang D; Zhou Y; Zhang Q; Song Q; Zhou C; Shi X; Li D ACS Appl Mater Interfaces; 2021 Oct; 13(39):46772-46782. PubMed ID: 34555906 [TBL] [Abstract][Full Text] [Related]
30. Crystal Facet-Modulated WO Zhao Z; Qu M; Zhu M; Shi H; Luo X; Guo T; Sun Q; Wang L; Zheng H ACS Appl Mater Interfaces; 2022 Nov; 14(43):48752-48761. PubMed ID: 36251536 [TBL] [Abstract][Full Text] [Related]
31. Forked Vein Structure W/WO Li H; Sun Z; Lei C; Kang W; Ma L; Shen Q; Jia H; Xue J; Zhu Y Small; 2024 Jul; 20(29):e2311041. PubMed ID: 38342590 [TBL] [Abstract][Full Text] [Related]
32. Efficient Photooxidation of Methane to Liquid Oxygenates over ZnO Nanosheets at Atmospheric Pressure and Near Room Temperature. Zhu S; Li X; Pan Z; Jiao X; Zheng K; Li L; Shao W; Zu X; Hu J; Zhu J; Sun Y; Xie Y Nano Lett; 2021 May; 21(9):4122-4128. PubMed ID: 33913720 [TBL] [Abstract][Full Text] [Related]
33. Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation. Ma M; Zhang K; Li P; Jung MS; Jeong MJ; Park JH Angew Chem Int Ed Engl; 2016 Sep; 55(39):11819-23. PubMed ID: 27533279 [TBL] [Abstract][Full Text] [Related]
34. W Single-Atom Catalyst for CH Wang Y; Zhang J; Shi WX; Zhuang GL; Zhao QP; Ren J; Zhang P; Yin HQ; Lu TB; Zhang ZM Adv Mater; 2022 Aug; 34(33):e2204448. PubMed ID: 35765197 [TBL] [Abstract][Full Text] [Related]
35. In aqua dual selective photocatalytic conversion of methane to formic acid and methanol with oxygen and water as oxidants without overoxidation. Han JT; Su H; Tan L; Li CJ iScience; 2023 Feb; 26(2):105942. PubMed ID: 36711239 [TBL] [Abstract][Full Text] [Related]
36. Breakthrough in the direct conversion of methane into c1-oxygenates. Barbero JA; Alvarez MC; Banñares MA; Peña MA; Fierro JL Chem Commun (Camb); 2002 Jun; (11):1184-5. PubMed ID: 12109073 [TBL] [Abstract][Full Text] [Related]
37. Temperature-Controlled Transformation of WO Chandra D; Katsuki T; Tanahashi Y; Togashi T; Tsubonouchi Y; Hoshino N; Zahran ZN; Yagi M ACS Appl Mater Interfaces; 2023 May; 15(17):20885-20896. PubMed ID: 37083342 [TBL] [Abstract][Full Text] [Related]
38. Mild Methane Electrochemical Oxidation Boosted via Plasma Pre-Activation. Sun X; Wang P; Davey K; Zheng Y; Qiao SZ Small; 2023 Nov; 19(45):e2303428. PubMed ID: 37434078 [TBL] [Abstract][Full Text] [Related]
39. Selective oxidation of methane to C Wang C; Xu Y; Xiong L; Li X; Chen E; Miao TJ; Zhang T; Lan Y; Tang J Nat Commun; 2024 Aug; 15(1):7535. PubMed ID: 39214973 [TBL] [Abstract][Full Text] [Related]
40. Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO Zhou S; Sun K; Huang J; Lu X; Xie B; Zhang D; Hart JN; Toe CY; Hao X; Amal R Small; 2021 Aug; 17(31):e2100496. PubMed ID: 34173332 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]