These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38061226)

  • 21. Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury.
    Nourbakhsh N; Singh P
    Nephron Clin Pract; 2014; 127(1-4):149-52. PubMed ID: 25343840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-drowning: new perspectives for human hypoxic acute kidney injury.
    Heyman SN; Gorelik Y; Zorbavel D; Rosenberger C; Abassi Z; Rosen S; Khamaisi M
    Nephrol Dial Transplant; 2020 Feb; 35(2):206-212. PubMed ID: 30768198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies.
    Sgouralis I; Kett MM; Ow CP; Abdelkader A; Layton AT; Gardiner BS; Smith DW; Lankadeva YR; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2016 Sep; 311(3):R532-44. PubMed ID: 27385734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathophysiology of radiocontrast nephropathy: a role for medullary hypoxia.
    Heyman SN; Reichman J; Brezis M
    Invest Radiol; 1999 Nov; 34(11):685-91. PubMed ID: 10548380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Hypoxia in Renal Failure Caused by Nephrotoxins and Hypertonic Solutions.
    Heyman SN; Khamaisi M; Zorbavel D; Rosen S; Abassi Z
    Semin Nephrol; 2019 Nov; 39(6):530-542. PubMed ID: 31836036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Angiotensin II augments medullary hypoxia and predisposes to acute renal failure.
    Brezis M; Greenfeld Z; Shina A; Rosen S
    Eur J Clin Invest; 1990 Apr; 20(2):199-207. PubMed ID: 2112485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Urinary Oxygenation as a Surrogate Measure of Medullary Oxygenation During Angiotensin II Therapy in Septic Acute Kidney Injury.
    Lankadeva YR; Kosaka J; Evans RG; Bellomo R; May CN
    Crit Care Med; 2018 Jan; 46(1):e41-e48. PubMed ID: 29077618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adjusting cardiopulmonary bypass flow or arterial pressure to maintain renal medullary oxygen.
    Joles JA
    Kidney Int; 2019 Jun; 95(6):1292-1293. PubMed ID: 31122704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renal oxygenation in acute renal ischemia-reperfusion injury.
    Abdelkader A; Ho J; Ow CP; Eppel GA; Rajapakse NW; Schlaich MP; Evans RG
    Am J Physiol Renal Physiol; 2014 May; 306(9):F1026-38. PubMed ID: 24598805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys.
    Brezis M; Heyman SN; Dinour D; Epstein FH; Rosen S
    J Clin Invest; 1991 Aug; 88(2):390-5. PubMed ID: 1864953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Renal function and oxygenation are impaired early after liver transplantation despite hyperdynamic systemic circulation.
    Skytte Larsson J; Bragadottir G; Redfors B; Ricksten SE
    Crit Care; 2017 Apr; 21(1):87. PubMed ID: 28395663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dexmedetomidine reduces norepinephrine requirements and preserves renal oxygenation and function in ovine septic acute kidney injury.
    Lankadeva YR; Ma S; Iguchi N; Evans RG; Hood SG; Farmer DGS; Bailey SR; Bellomo R; May CN
    Kidney Int; 2019 Nov; 96(5):1150-1161. PubMed ID: 31530477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric Oxide Synthase Inhibition Induces Renal Medullary Hypoxia in Conscious Rats.
    Emans TW; Janssen BJ; Joles JA; Krediet CTP
    J Am Heart Assoc; 2018 Aug; 7(15):e009501. PubMed ID: 30371226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic responses of renal oxygenation at the onset of cardiopulmonary bypass in sheep and man.
    Evans RG; Cochrane AD; Hood SG; Iguchi N; Marino B; Bellomo R; McCall PR; Okazaki N; Smith JA; Zhu MZ; Ngo JP; Noe KM; Martin A; Thrift AG; Lankadeva YR; May CN
    Perfusion; 2022 Sep; 37(6):624-632. PubMed ID: 33977810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of two dimeric iodinated contrast media on renal medullary blood perfusion and oxygenation in dogs.
    Lancelot E; Idée JM; Laclédère C; Santus R; Corot C
    Invest Radiol; 2002 Jul; 37(7):368-75. PubMed ID: 12068157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term measurement of renal cortical and medullary tissue oxygenation and perfusion in unanesthetized sheep.
    Calzavacca P; Evans RG; Bailey M; Lankadeva YR; Bellomo R; May CN
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(10):R832-9. PubMed ID: 25761701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of renal NO production in the regulation of medullary blood flow.
    Cowley AW; Mori T; Mattson D; Zou AP
    Am J Physiol Regul Integr Comp Physiol; 2003 Jun; 284(6):R1355-69. PubMed ID: 12736168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-dose nitrite alleviates early effects of an X-ray contrast medium on renal hemodynamics and oxygenation in rats.
    Seeliger E; Cantow K; Arakelyan K; Ladwig M; Persson PB; Flemming B
    Invest Radiol; 2014 Feb; 49(2):70-7. PubMed ID: 24056115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen transport across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1042-55. PubMed ID: 12181134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adenosine A1 receptors in contrast media-induced renal dysfunction in the normal rat.
    Liss P; Carlsson PO; Palm F; Hansell P
    Eur Radiol; 2004 Jul; 14(7):1297-302. PubMed ID: 14714138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.