These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38061226)

  • 41. Adenosine A1 receptors in contrast media-induced renal dysfunction in the normal rat.
    Liss P; Carlsson PO; Palm F; Hansell P
    Eur Radiol; 2004 Jul; 14(7):1297-302. PubMed ID: 14714138
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology.
    Evans RG; Ince C; Joles JA; Smith DW; May CN; O'Connor PM; Gardiner BS
    Clin Exp Pharmacol Physiol; 2013 Feb; 40(2):106-22. PubMed ID: 23167537
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Renal arterial infusion of tempol prevents medullary hypoperfusion, hypoxia, and acute kidney injury in ovine Gram-negative sepsis.
    Betrie AH; Ma S; Ow CPC; Peiris RM; Evans RG; Ayton S; Lane DJR; Southon A; Bailey SR; Bellomo R; May CN; Lankadeva YR
    Acta Physiol (Oxf); 2023 Sep; 239(1):e14025. PubMed ID: 37548350
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis.
    Evans RG; Gardiner BS; Smith DW; O'Connor PM
    Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1259-70. PubMed ID: 18550645
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cardiac Surgery-Associated Kidney Injury in Children and Renal Oximetry.
    Joffe R; Al Aklabi M; Bhattacharya S; Cave D; Calleja T; Garros D; Majesic N; Ryerson L; Morgan C
    Pediatr Crit Care Med; 2018 Sep; 19(9):839-845. PubMed ID: 30028784
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Myoglobinuric acute renal failure in the rat: a role for medullary hypoperfusion, hypoxia, and tubular obstruction.
    Heyman SN; Rosen S; Fuchs S; Epstein FH; Brezis M
    J Am Soc Nephrol; 1996 Jul; 7(7):1066-74. PubMed ID: 8829123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of medullary ischemia in acute renal failure.
    Heyman SN; Fuchs S; Brezis M
    New Horiz; 1995 Nov; 3(4):597-607. PubMed ID: 8574590
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla.
    Chen J; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1369-83. PubMed ID: 20335320
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lipopolysaccharide Pretreatment Prevents Medullary Vascular Congestion following Renal Ischemia by Limiting Early Reperfusion of the Medullary Circulation.
    McLarnon SR; Wilson K; Patel B; Sun J; Sartain CL; Mejias CD; Musall JB; Sullivan JC; Wei Q; Chen JK; Hyndman KA; Marshall B; Yang H; Fogo AB; O'Connor PM
    J Am Soc Nephrol; 2022 Apr; 33(4):769-785. PubMed ID: 35115326
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Kidney medullary hypoxia: a key to understanding acute renal failure?].
    Schurek HJ
    Klin Wochenschr; 1988 Sep; 66(18):828-35. PubMed ID: 3054271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of Fluid Bolus Therapy on Renal Perfusion, Oxygenation, and Function in Early Experimental Septic Kidney Injury.
    Lankadeva YR; Kosaka J; Iguchi N; Evans RG; Booth LC; Bellomo R; May CN
    Crit Care Med; 2019 Jan; 47(1):e36-e43. PubMed ID: 30394921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cortical and Medullary Tissue Perfusion and Oxygenation in Experimental Septic Acute Kidney Injury.
    Calzavacca P; Evans RG; Bailey M; Bellomo R; May CN
    Crit Care Med; 2015 Oct; 43(10):e431-9. PubMed ID: 26181218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determinants of intrarenal oxygenation: factors in acute renal failure.
    Rosen S; Epstein FH; Brezis M
    Ren Fail; 1992; 14(3):321-5. PubMed ID: 1509164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2016 Feb; 310(3):F237-47. PubMed ID: 26831340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat.
    Cowley AW
    Exp Physiol; 2000 Mar; 85 Spec No():223S-231S. PubMed ID: 10795926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of Perfusion and Oxygenation of the Human Renal Cortex and Medulla by Quantitative MRI during Handgrip Exercise.
    Haddock BT; Francis ST; Larsson HBW; Andersen UB
    J Am Soc Nephrol; 2018 Oct; 29(10):2510-2517. PubMed ID: 30206141
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Renal tissue oxygenation during hypoxic hypoxia.
    Sinagowitz E; Baker R; Strauss J; Kessler M
    Adv Exp Med Biol; 1976; 75():441-7. PubMed ID: 1015425
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney.
    Gardiner BS; Smith DW; O'Connor PM; Evans RG
    Am J Physiol Renal Physiol; 2011 Jun; 300(6):F1339-52. PubMed ID: 21367922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxygen transport in a cross section of the rat inner medulla: impact of heterogeneous distribution of nephrons and vessels.
    Fry BC; Layton AT
    Math Biosci; 2014 Dec; 258():68-76. PubMed ID: 25260928
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predicting oxygen tension along the ureter.
    Lee CJ; Gardiner BS; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2021 Oct; 321(4):F527-F547. PubMed ID: 34459223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.