These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38061251)

  • 1. Revealing the origins of vortex cavitation in a Venturi tube by high speed X-ray imaging.
    Soyama H; Liang X; Yashiro W; Kajiwara K; Asimakopoulou EM; Bellucci V; Birnsteinova S; Giovanetti G; Kim C; Kirkwood HJ; Koliyadu JCP; Letrun R; Zhang Y; Uličný J; Bean R; Mancuso AP; Villanueva-Perez P; Sato T; Vagovič P; Eakins D; Korsunsky AM
    Ultrason Sonochem; 2023 Dec; 101():106715. PubMed ID: 38061251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number.
    Soyama H
    Ultrason Sonochem; 2021 Mar; 71():105389. PubMed ID: 33221624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP; Lu PC; Liu JS; Lo CW; Hwang NH
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of cavitation bubbles in viscous liquids in a tube during a transient process.
    Wang Z; Xu P; Ren Z; Yu L; Zuo Z; Liu S
    Ultrason Sonochem; 2024 Mar; 104():106840. PubMed ID: 38457940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification.
    Ge M; Sun C; Zhang G; Coutier-Delgosha O; Fan D
    Ultrason Sonochem; 2022 May; 86():106035. PubMed ID: 35580542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble.
    Tzanakis I; Eskin DG; Georgoulas A; Fytanidis DK
    Ultrason Sonochem; 2014 Mar; 21(2):866-78. PubMed ID: 24176799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of cavitation and the formation of stable bubbles on the Björk-Shiley Monostrut prosthetic heart valve.
    Bachmann C; Kini V; Deutsch S; Fontaine AA; Tarbell JM
    J Heart Valve Dis; 2002 Jan; 11(1):105-13. PubMed ID: 11843495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of vortex-based cavitation devices/reactors: Influence of aspect ratio, number of inlets and shape.
    Gode A; Madane K; Ranade VV
    Ultrason Sonochem; 2023 Dec; 101():106695. PubMed ID: 38011805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of cavitation-vortex interaction mechanism in an advanced rotational hydrodynamic cavitation reactor.
    Xia G; You W; Manickam S; Yoon JY; Xuan X; Sun X
    Ultrason Sonochem; 2024 May; 105():106849. PubMed ID: 38513544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical modeling and experimental validation of hydrodynamic cavitation reactor with a Venturi tube for sugarcane bagasse pretreatment.
    Bimestre TA; Júnior JAM; Botura CA; Canettieri E; Tuna CE
    Bioresour Technol; 2020 Sep; 311():123540. PubMed ID: 32446231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field.
    Wu H; Zheng H; Li Y; Ohl CD; Yu H; Li D
    Ultrason Sonochem; 2021 Oct; 78():105735. PubMed ID: 34479075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultra-fine particles.
    Zhou S; Wang X; Bu X; Wang M; An B; Shao H; Ni C; Peng Y; Xie G
    Ultrason Sonochem; 2020 Jun; 64():105005. PubMed ID: 32062426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study on damage mechanism of blood vessel by cavitation bubbles.
    Liu Y; Luo J
    Ultrason Sonochem; 2023 Oct; 99():106562. PubMed ID: 37619475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for optimization of slit Venturi dimensions through CFD simulation and RSM design.
    Abbasi E; Saadat S; Karimi Jashni A; Shafaei MH
    Ultrason Sonochem; 2020 Oct; 67():105088. PubMed ID: 32279032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying OH radical generation in hydrodynamic cavitation via coumarin dosimetry: Influence of operating parameters and cavitation devices.
    De-Nasri SJ; Sarvothaman VP; Nagarajan S; Manesiotis P; Robertson PKJ; Ranade VV
    Ultrason Sonochem; 2022 Nov; 90():106207. PubMed ID: 36335794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of medium viscoelasticity on bubble collapse strength of interacting polydisperse bubbles.
    Qin D; Zou Q; Zhong X; Zhang B; Li Z
    Ultrason Sonochem; 2023 May; 95():106375. PubMed ID: 36965309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The acoustic emissions of cavitation bubbles in stretched vortices.
    Chang NA; Ceccio SL
    J Acoust Soc Am; 2011 Nov; 130(5):3209-19. PubMed ID: 22087993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).
    Zhou Y; Gao XW
    Phys Med Biol; 2016 Sep; 61(18):6651-6667. PubMed ID: 27541633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.