These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38061304)

  • 1. Novel synergistic cross-linking ameliorate ready-to-eat sea cucumber deterioration and its quantum chemical analysis.
    Li Y; Qi X; Fan C; Fan Y; Zhang H; Zhang J; Hou H
    Food Chem; 2024 May; 439():138097. PubMed ID: 38061304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cleavage sites and non-enzymatic self-degradation mechanism of ready-to-eat sea cucumber during storage.
    Sun X; Zhu L; Qi X; Zhang H; Wu L; Wang J; Hou H
    Food Chem; 2022 May; 375():131722. PubMed ID: 34922275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervention mechanism of self-degradation of ready-to-eat sea cucumber by adding green tea extract and gallic acid.
    Qi X; Sun X; Zhu L; Zhang H; Wang Y; Liu Y; Hou H
    Food Res Int; 2022 Jun; 156():111282. PubMed ID: 35651054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of molecular cross-linking against nonenzymatic degradation in the body wall of ready-to-eat sea cucumber.
    Zhu L; Qi X; Bai J; Sun X; Hou H
    Food Chem; 2022 Mar; 373(Pt B):131359. PubMed ID: 34731795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of secondary bonds to the storage stability of ready-to-eat sea cucumber.
    Tian Q; Lin L; Qi X; Zhu L; Hao L; Wu L; Wang J; Hou H
    Food Chem; 2022 Sep; 389():133061. PubMed ID: 35526283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of gallic acid and chlorogenic acid on physicochemical, microstructural and thermal degradation properties of ready-to-eat sea cucumber.
    Zhu L; Sun X; Fan Y; Wang Y; Qi X; Hou H
    Food Chem; 2022 Jun; 380():132186. PubMed ID: 35093663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of protein cleavage at asparagine leading to protein-protein cross-links.
    Friedrich MG; Wang Z; Schey KL; Truscott RJW
    Biochem J; 2019 Dec; 476(24):3817-3834. PubMed ID: 31794011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Heat-Induced Water Adsorption of Sea Cucumber Body Wall.
    Dong X; Liu W; Song X; Lin X; Yu D; Yu C; Zhu B
    J Food Sci; 2019 Jan; 84(1):92-100. PubMed ID: 30592534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidized inositol stabilizes rehydrated sea cucumbers against non-enzymatic deterioration.
    Cao H; Liu D; Zhi L; Liu J; Liu Y; Xu H; Wang D; Xu Y; Xue C; Sun X
    Food Chem; 2023 Mar; 405(Pt B):134973. PubMed ID: 36435117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration mill-assisted complex enzyme hydrolysis for flavoring of freeze-dried sea cucumber powder.
    Jin DL; Chen YW; Hong XD; Chai TT; Ren ST; Ou YZ; Huang XX; Hu HB
    J Food Biochem; 2022 Oct; 46(10):e14298. PubMed ID: 35780305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation pattern of off-flavor compounds induced by water migration during the storage of sea cucumber peptide powders (SCPPs).
    Wang K; Yang R; Sun N; Dong Y; Cheng S; Lin S
    Food Chem; 2019 Feb; 274():100-109. PubMed ID: 30372913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of multiple freeze-thaw cycles on the quality of instant sea cucumber: Emphatically on water status of by LF-NMR and MRI.
    Tan M; Lin Z; Zu Y; Zhu B; Cheng S
    Food Res Int; 2018 Jul; 109():65-71. PubMed ID: 29803493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of processing method on chemical compositions and nutritional quality of ready-to-eat sea cucumber (
    Li M; Qi Y; Mu L; Li Z; Zhao Q; Sun J; Jiang Q
    Food Sci Nutr; 2019 Feb; 7(2):755-763. PubMed ID: 30847154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a targeted proteomics method for the quantification of collagen chain: Revealing the chain stoichiometry of heterotypic collagen fibrils in sea cucumber.
    Shi F; Wang Y; Chang Y; Liu K; Xue C
    Food Chem; 2024 Feb; 433():137335. PubMed ID: 37678116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Evaluation of Peptides with Potential Antioxidant Activity by Microwave Assisted Enzymatic Hydrolysis of Collagen from Sea Cucumber
    Jin HX; Xu HP; Li Y; Zhang QW; Xie H
    Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30875949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides.
    Patel K; Borchardt RT
    Pharm Res; 1990 Aug; 7(8):787-93. PubMed ID: 2235875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-inflammatory peptides and metabolomics-driven biomarkers discovery from sea cucumber protein hydrolysates.
    Zhang X; Li H; Wang L; Zhang S; Wang F; Lin H; Gao S; Li X; Liu K
    J Food Sci; 2021 Aug; 86(8):3540-3549. PubMed ID: 34268766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia cleaves polypeptides at asparagine proline bonds.
    Tarelli E; Corran PH
    J Pept Res; 2003 Dec; 62(6):245-51. PubMed ID: 14632927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of a sea cucumber fucoidan-utilizing marine bacterium.
    Chang Y; Xue C; Tang Q; Li D; Wu X; Wang J
    Lett Appl Microbiol; 2010 Mar; 50(3):301-7. PubMed ID: 20070508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.