These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38061429)
1. Intrinsic and extrinsic techniques for quantification uncertainty of an interpretable GRU deep learning model used to predict atmospheric total suspended particulates (TSP) in Zabol, Iran during the dusty period of 120-days wind. Gholami H; Mohammadifar A; Behrooz RD; Kaskaoutis DG; Li Y; Song Y Environ Pollut; 2024 Feb; 342():123082. PubMed ID: 38061429 [TBL] [Abstract][Full Text] [Related]
2. Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source. Gholami H; Mohammadifar A Sci Rep; 2022 Nov; 12(1):19342. PubMed ID: 36369266 [TBL] [Abstract][Full Text] [Related]
3. Using an interpretable deep learning model for the prediction of riverine suspended sediment load. Mohammadi-Raigani Z; Gholami H; Mohamadifar A; Samani AN; Pradhan B Environ Sci Pollut Res Int; 2024 May; 31(22):32480-32493. PubMed ID: 38656723 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using DeepQuantreg and game theory. Mohammadifar A; Gholami H; Golzari S Sci Rep; 2022 Sep; 12(1):15167. PubMed ID: 36071137 [TBL] [Abstract][Full Text] [Related]
5. An assessment of global land susceptibility to wind erosion based on deep-active learning modelling and interpretation techniques. Gholami H; Mohammadifar A; Song Y; Li Y; Rahmani P; Kaskaoutis DG; Panagos P; Borrelli P Sci Rep; 2024 Aug; 14(1):18951. PubMed ID: 39147802 [TBL] [Abstract][Full Text] [Related]
6. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Arhami M; Kamali N; Rajabi MM Environ Sci Pollut Res Int; 2013 Jul; 20(7):4777-89. PubMed ID: 23292230 [TBL] [Abstract][Full Text] [Related]
7. Accuracy, uncertainty, and interpretability assessments of ANFIS models to predict dust concentration in semi-arid regions. Ebrahimi-Khusfi Z; Taghizadeh-Mehrjardi R; Nafarzadegan AR Environ Sci Pollut Res Int; 2021 Feb; 28(6):6796-6810. PubMed ID: 33011943 [TBL] [Abstract][Full Text] [Related]
8. Elemental and carbonaceous characterization of TSP and PM Shahsavani A; Yarahmadi M; Hadei M; Sowlat MH; Naddafi K Environ Monit Assess; 2017 Aug; 189(9):462. PubMed ID: 28828754 [TBL] [Abstract][Full Text] [Related]
9. Stacking- and voting-based ensemble deep learning models (SEDL and VEDL) and active learning (AL) for mapping land subsidence. Mohammadifar A; Gholami H; Golzari S Environ Sci Pollut Res Int; 2023 Feb; 30(10):26580-26595. PubMed ID: 36369445 [TBL] [Abstract][Full Text] [Related]
10. A Machine Learning Model Based on GRU and LSTM to Predict the Environmental Parameters in a Layer House, Taking CO Chen X; Yang L; Xue H; Li L; Yu Y Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203104 [TBL] [Abstract][Full Text] [Related]
11. Climatology of atmospheric circulation patterns of Arabian dust in western Iran. Najafi MS; Sarraf BS; Zarrin A; Rasouli AA Environ Monit Assess; 2017 Aug; 189(9):473. PubMed ID: 28849292 [TBL] [Abstract][Full Text] [Related]
12. Peak event analysis: a novel empirical method for the evaluation of elevated particulate events. Orkin A; Leece P; Piggott T; Burt P; Copes R Environ Health; 2013 Nov; 12():92. PubMed ID: 24180346 [TBL] [Abstract][Full Text] [Related]
13. Seasonal variations of PM10 and TSP in residential and industrial sites in an urban area of Kolkata, India. Karar K; Gupta AK; Kumar A; Biswas AK Environ Monit Assess; 2006 Jul; 118(1-3):369-81. PubMed ID: 16897551 [TBL] [Abstract][Full Text] [Related]
14. Particulate matter concentration from open-cut coal mines: A hybrid machine learning estimation. Qi C; Zhou W; Lu X; Luo H; Pham BT; Yaseen ZM Environ Pollut; 2020 Aug; 263(Pt A):114517. PubMed ID: 32283465 [TBL] [Abstract][Full Text] [Related]
15. Monitoring the water surface of wetlands in Iran and their relationship with air pollution in nearby cities. Ebrahimi-Khusfi Z; Nafarzadegan AR; Ebrahimi-Khusfi M; Zandifar S Environ Monit Assess; 2022 Jun; 194(7):488. PubMed ID: 35674846 [TBL] [Abstract][Full Text] [Related]
16. Interpretability of simple RNN and GRU deep learning models used to map land susceptibility to gully erosion. Gholami H; Mohammadifar A; Golzari S; Song Y; Pradhan B Sci Total Environ; 2023 Dec; 904():166960. PubMed ID: 37696396 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal Variation and Influencing Factors of TSP and Anions in Coastal Atmosphere of Zhanjiang City, China. Zhang JB; Rong YM; Yin QF; Zhang P; Zhao LR; Chen CL Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206218 [TBL] [Abstract][Full Text] [Related]
18. Characterization of ionic composition of TSP and PM10 during the Middle Eastern Dust (MED) storms in Ahvaz, Iran. Shahsavani A; Naddafi K; Jaafarzadeh Haghighifard N; Mesdaghinia A; Yunesian M; Nabizadeh R; Arhami M; Yarahmadi M; Sowlat MH; Ghani M; Jonidi Jafari A; Alimohamadi M; Motevalian SA; Soleimani Z Environ Monit Assess; 2012 Nov; 184(11):6683-92. PubMed ID: 22146819 [TBL] [Abstract][Full Text] [Related]
19. Atmospheric pollutants study of particles and metallic elements during high wind speed (wind speed >6 m/s) near Taiwan Strait around central Taiwan. Wu YS; Fang GC; Lin JB; Lin JG; Huang SH; Rau JY Toxicol Ind Health; 2006 Feb; 22(1):1-13. PubMed ID: 16572707 [TBL] [Abstract][Full Text] [Related]
20. Changes in airborne lead particulate in port pirie, South Australia, 1986-1996. Esterman AJ; Maynard EJ Environ Res; 1998 Nov; 79(2):122-32. PubMed ID: 9841811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]