These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 38061626)

  • 41. Orthopoxvirus targets for the development of new antiviral agents.
    Prichard MN; Kern ER
    Antiviral Res; 2012 May; 94(2):111-25. PubMed ID: 22406470
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization.
    Liu X; Jiang S; Ma L; Qu J; Zhao L; Zhu X; Ding J
    Genome Biol; 2021 Aug; 22(1):230. PubMed ID: 34404453
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Paving new roads toward the advancement of broad-spectrum antiviral agents.
    Du R; Achi JG; Cui Q; Rong L
    J Med Virol; 2024 Jan; 96(1):e29369. PubMed ID: 38180269
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinase Inhibitors as Underexplored Antiviral Agents.
    García-Cárceles J; Caballero E; Gil C; Martínez A
    J Med Chem; 2022 Jan; 65(2):935-954. PubMed ID: 33970631
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Peptides--a new strategy for combating viral infections].
    Kołodziej M; Joniec J; Bartoszcze M; Mirski T; Gryko R
    Przegl Epidemiol; 2011; 65(3):477-82. PubMed ID: 22184952
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Naturally Occurring Herbs and their Bioactive Metabolites: Potential Targets and Signaling Pathways of Antiviral Agents.
    Singh S; Sharma S; Sharma H
    Endocr Metab Immune Disord Drug Targets; 2023; 23(12):1505-1537. PubMed ID: 37350004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antivirals with common targets against highly pathogenic viruses.
    Lu L; Su S; Yang H; Jiang S
    Cell; 2021 Mar; 184(6):1604-1620. PubMed ID: 33740455
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Prospects and current data in antiviral chemotherapy].
    Huraux JM; Ingrand D; Agut H; Devillechabrolle A
    Rev Pneumol Clin; 1989; 45(3):99-105. PubMed ID: 2685967
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway.
    Pattabhi S; Wilkins CR; Dong R; Knoll ML; Posakony J; Kaiser S; Mire CE; Wang ML; Ireton RC; Geisbert TW; Bedard KM; Iadonato SP; Loo YM; Gale M
    J Virol; 2015 Dec; 90(5):2372-87. PubMed ID: 26676770
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New pharmacological strategies to fight enveloped viruses.
    Wisskirchen K; Lucifora J; Michler T; Protzer U
    Trends Pharmacol Sci; 2014 Sep; 35(9):470-8. PubMed ID: 25108320
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Editorial overview: Engineering for viral resistance.
    von Brunn A
    Curr Opin Virol; 2015 Oct; 14():v-vii. PubMed ID: 26320757
    [No Abstract]   [Full Text] [Related]  

  • 52. Antiviral therapy: old and current issues.
    Antonelli G; Turriziani O
    Int J Antimicrob Agents; 2012 Aug; 40(2):95-102. PubMed ID: 22727532
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antiviral drug resistance: mechanisms and clinical implications.
    Strasfeld L; Chou S
    Infect Dis Clin North Am; 2010 Jun; 24(2):413-37. PubMed ID: 20466277
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural biology in antiviral drug discovery.
    Bassetto M; Massarotti A; Coluccia A; Brancale A
    Curr Opin Pharmacol; 2016 Oct; 30():116-130. PubMed ID: 27611878
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel Broad-Spectrum Antiviral Inhibitors Targeting Host Factors Essential for Replication of Pathogenic RNA Viruses.
    Tampere M; Pettke A; Salata C; Wallner O; Koolmeister T; Cazares-Körner A; Visnes T; Hesselman MC; Kunold E; Wiita E; Kalderén C; Lightowler M; Jemth AS; Lehtiö J; Rosenquist Å; Warpman-Berglund U; Helleday T; Mirazimi A; Jafari R; Puumalainen MR
    Viruses; 2020 Dec; 12(12):. PubMed ID: 33322045
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomolecular condensates in cancer biology.
    Suzuki HI; Onimaru K
    Cancer Sci; 2022 Feb; 113(2):382-391. PubMed ID: 34865286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Type II transmembrane serine proteases as potential target for anti-influenza drug discovery.
    Shin WJ; Seong BL
    Expert Opin Drug Discov; 2017 Nov; 12(11):1139-1152. PubMed ID: 28870104
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Liquid Biomolecular Condensates and Viral Lifecycles: Review and Perspectives.
    Etibor TA; Yamauchi Y; Amorim MJ
    Viruses; 2021 Feb; 13(3):. PubMed ID: 33669141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antiviral drug discovery against arthritogenic alphaviruses: Tools and molecular targets.
    Abdelnabi R; Jacobs S; Delang L; Neyts J
    Biochem Pharmacol; 2020 Apr; 174():113777. PubMed ID: 31874146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reactive oxygen species as potential antiviral targets.
    Sander WJ; Fourie C; Sabiu S; O'Neill FH; Pohl CH; O'Neill HG
    Rev Med Virol; 2022 Jan; 32(1):e2240. PubMed ID: 33949029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.