These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 38061991)
1. Constructing Interfacial Oxygen Vacancy and Ruthenium Lewis Acid-Base Pairs to Boost the Alkaline Hydrogen Evolution Reaction Kinetics. Qin Q; Jang H; Jiang X; Wang L; Wang X; Kim MG; Liu S; Liu X; Cho J Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202317622. PubMed ID: 38061991 [TBL] [Abstract][Full Text] [Related]
2. Insights into the Interfacial Lewis Acid-Base Pairs in CeO Li J; Xia Z; Xue Q; Zhang M; Zhang S; Xiao H; Ma Y; Qu Y Small; 2021 Oct; 17(39):e2103018. PubMed ID: 34405538 [TBL] [Abstract][Full Text] [Related]
3. Boosting Hydrogen Evolution Reaction by Phase Engineering and Phosphorus Doping on Ru/P-TiO Zhou S; Jang H; Qin Q; Hou L; Kim MG; Liu S; Liu X; Cho J Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202212196. PubMed ID: 36164268 [TBL] [Abstract][Full Text] [Related]
4. Synergic Reaction Kinetics over Adjacent Ruthenium Sites for Superb Hydrogen Generation in Alkaline Media. He Q; Zhou Y; Shou H; Wang X; Zhang P; Xu W; Qiao S; Wu C; Liu H; Liu D; Chen S; Long R; Qi Z; Wu X; Song L Adv Mater; 2022 May; 34(20):e2110604. PubMed ID: 35319113 [TBL] [Abstract][Full Text] [Related]
5. Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Chen G; Wang T; Zhang J; Liu P; Sun H; Zhuang X; Chen M; Feng X Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29349907 [TBL] [Abstract][Full Text] [Related]
6. Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt. Liu X; Wei S; Cao S; Zhang Y; Xue W; Wang Y; Liu G; Li J Adv Mater; 2024 Aug; 36(33):e2405970. PubMed ID: 38866382 [TBL] [Abstract][Full Text] [Related]
7. Ru Nanoparticles Encapsulated by Defective TiO Fu X; Huang X; Cen Y; Ren X; Yan L; Jin S; Zhuang Z; Li W; Tian S Small; 2024 Dec; 20(51):e2406387. PubMed ID: 39385625 [TBL] [Abstract][Full Text] [Related]
8. Ru incorporated into Se vacancy-containing CoSe Liu L; Yang Z; Gao W; Shi J; Ma J; Liu Z; Wang L; Wang Y; Chen Z Nanoscale; 2024 Oct; 16(39):18421-18429. PubMed ID: 39253762 [TBL] [Abstract][Full Text] [Related]
9. Exploring the Dominant Role of Atomic- and Nano-Ruthenium as Active Sites for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media. Zhang L; Jang H; Wang Y; Li Z; Zhang W; Kim MG; Yang D; Liu S; Liu X; Cho J Adv Sci (Weinh); 2021 Aug; 8(15):e2004516. PubMed ID: 34085783 [TBL] [Abstract][Full Text] [Related]
10. Constructing built-in electric field via ruthenium/cerium dioxide Mott-Schottky heterojunction for highly efficient electrocatalytic hydrogen production. Chen X; Shi D; Bi M; Song J; Qin Y; Du S; Sun B; Chen C; Sun D J Colloid Interface Sci; 2023 Dec; 652(Pt A):653-662. PubMed ID: 37543477 [TBL] [Abstract][Full Text] [Related]
11. Integrated doped-Ru electrocatalyst with excellent H adsorption-desorption and active site on hollow tubular structures for boosting efficient hydrogen evolution. Yin Y; Zhu Y; Qian L; Wang F; Yuan Z; Dai Y; Zhang T; Xue S; Yang D; Qiu F J Colloid Interface Sci; 2025 Jan; 677(Pt B):1005-1013. PubMed ID: 39178664 [TBL] [Abstract][Full Text] [Related]
12. Tuning the Local Environment of Pt Species at CNT@MO Zhou CA; Ma K; Zhuang Z; Ran M; Shu G; Wang C; Song L; Zheng L; Yue H; Wang D J Am Chem Soc; 2024 Aug; 146(31):21453-21465. PubMed ID: 39052434 [TBL] [Abstract][Full Text] [Related]
13. Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Yang M; Jiao L; Dong H; Zhou L; Teng C; Yan D; Ye TN; Chen X; Liu Y; Jiang HL Sci Bull (Beijing); 2021 Feb; 66(3):257-264. PubMed ID: 36654331 [TBL] [Abstract][Full Text] [Related]
14. Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation. Wang Y; Zheng P; Li M; Li Y; Zhang X; Chen J; Fang X; Liu Y; Yuan X; Dai X; Wang H Nanoscale; 2020 May; 12(17):9669-9679. PubMed ID: 32319487 [TBL] [Abstract][Full Text] [Related]
15. Ultrafine Ru nanoparticles stabilized by V Long Y; Shen Y; Jiang P; Su H; Xian J; Sun Y; Yang J; Song H; Liu Q; Li G Sci Bull (Beijing); 2024 Mar; 69(6):763-771. PubMed ID: 38246797 [TBL] [Abstract][Full Text] [Related]
16. Alleviating OH Blockage on the Catalyst Surface by the Puncture Effect of Single-Atom Sites to Boost Alkaline Water Electrolysis. Lin X; Hu W; Xu J; Liu X; Jiang W; Ma X; He D; Wang Z; Li W; Yang LM; Zhou H; Wu Y J Am Chem Soc; 2024 Feb; 146(7):4883-4891. PubMed ID: 38326284 [TBL] [Abstract][Full Text] [Related]
17. Partial-Single-Atom, Partial-Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution. Hu C; Song E; Wang M; Chen W; Huang F; Feng Z; Liu J; Wang J Adv Sci (Weinh); 2021 Jan; 8(2):2001881. PubMed ID: 33510999 [TBL] [Abstract][Full Text] [Related]
18. Oxophilic gallium single atoms bridged ruthenium clusters for practical anion-exchange membrane electrolyzer. Zhou C; Shi J; Dong Z; Zeng L; Chen Y; Han Y; Li L; Zhang W; Zhang Q; Gu L; Lv F; Luo M; Guo S Nat Commun; 2024 Aug; 15(1):6741. PubMed ID: 39112466 [TBL] [Abstract][Full Text] [Related]
19. Design Superior Alkaline Hydrogen Evolution Electrocatalyst by Engineering Dual Active Sites for Water Dissociation and Hydrogen Desorption. Chen J; Jin Q; Li Y; Li Y; Cui H; Wang C ACS Appl Mater Interfaces; 2019 Oct; 11(42):38771-38778. PubMed ID: 31566359 [TBL] [Abstract][Full Text] [Related]
20. Optimizing Hydrogen and Hydroxyl Adsorption over Ru/WO Cheng Z; Yang Y; Wang P; Wang P; Yang J; Wang D; Chen Q Small; 2024 Apr; 20(17):e2307780. PubMed ID: 38168535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]