These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 38062164)
1. Unveiling the role of ABI3 and hub senescence-related genes in macrophage senescence for atherosclerotic plaque progression. Fu Y; Zhang J; Liu Q; Yang L; Wu Q; Yang X; Wang L; Ding N; Xiong J; Gao Y; Ma S; Jiang Y Inflamm Res; 2024 Jan; 73(1):65-82. PubMed ID: 38062164 [TBL] [Abstract][Full Text] [Related]
2. Yang-Xin-Shu-Mai granule alleviates atherosclerosis by regulating macrophage polarization via the TLR9/MyD88/NF-κB signaling pathway. Huang H; Sun Z; Xu J; Wang L; Zhao J; Li J; Zhang S; Yuan F; Liu M; Fang Z J Ethnopharmacol; 2024 Jan; 318(Pt A):116868. PubMed ID: 37454749 [TBL] [Abstract][Full Text] [Related]
3. Identification and experimental validation of KMO as a critical immune-associated mitochondrial gene in unstable atherosclerotic plaque. Liao FJ; Shen SL; Bao HL; Li H; Zhao QW; Chen L; Gong CW; Xiong CZ; Liu WP; Li W; Liu DN J Transl Med; 2024 Jul; 22(1):668. PubMed ID: 39026250 [TBL] [Abstract][Full Text] [Related]
4. Integrating machine learning algorithms and single-cell analysis to identify gut microbiota-related macrophage biomarkers in atherosclerotic plaques. Ke Y; Yue J; He J; Liu G Front Cell Infect Microbiol; 2024; 14():1395716. PubMed ID: 38716195 [TBL] [Abstract][Full Text] [Related]
5. Rap1 induces cytokine production in pro-inflammatory macrophages through NFκB signaling and is highly expressed in human atherosclerotic lesions. Cai Y; Sukhova GK; Wong HK; Xu A; Tergaonkar V; Vanhoutte PM; Tang EH Cell Cycle; 2015; 14(22):3580-92. PubMed ID: 26505215 [TBL] [Abstract][Full Text] [Related]
6. Identifying Hub Genes and Immune Cell Infiltration for the Progression of Carotid Atherosclerotic Plaques in the Context of Predictive and Preventive Using Integrative Bioinformatics Approaches and Machine-Learning Strategies. Zhang H; Huang Y; Li X; Chen W; Lun Y; Zhang J J Immunol Res; 2022; 2022():7657379. PubMed ID: 36304068 [TBL] [Abstract][Full Text] [Related]
7. Immune and inflammatory insights in atherosclerosis: development of a risk prediction model through single-cell and bulk transcriptomic analyses. Chen X; Zhang Z; Qiao G; Sun Z; Lu W Front Immunol; 2024; 15():1448662. PubMed ID: 39364414 [TBL] [Abstract][Full Text] [Related]
8. Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning. Wang J; Kang Z; Liu Y; Li Z; Liu Y; Liu J Front Immunol; 2022; 13():956078. PubMed ID: 36211422 [TBL] [Abstract][Full Text] [Related]
9. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Tang ZH; Peng J; Ren Z; Yang J; Li TT; Li TH; Wang Z; Wei DH; Liu LS; Zheng XL; Jiang ZS Atherosclerosis; 2017 Jul; 262():113-122. PubMed ID: 28535426 [TBL] [Abstract][Full Text] [Related]
10. Development of gene model combined with machine learning technology to predict for advanced atherosclerotic plaques. Wang L; Bao Y; Yu F; Zhu W; Wang JL; Yang J; Xie H; Huang D Clin Neurol Neurosurg; 2023 Aug; 231():107819. PubMed ID: 37315377 [TBL] [Abstract][Full Text] [Related]
11. Karunakaran D; Nguyen MA; Geoffrion M; Vreeken D; Lister Z; Cheng HS; Otte N; Essebier P; Wyatt H; Kandiah JW; Jung R; Alenghat FJ; Mompeon A; Lee R; Pan C; Gordon E; Rasheed A; Lusis AJ; Liu P; Matic LP; Hedin U; Fish JE; Guo L; Kolodgie F; Virmani R; van Gils JM; Rayner KJ Circulation; 2021 Jan; 143(2):163-177. PubMed ID: 33222501 [TBL] [Abstract][Full Text] [Related]
12. MicroRNA-216a promotes M1 macrophages polarization and atherosclerosis progression by activating telomerase via the Smad3/NF-κB pathway. Yang S; Li J; Chen Y; Zhang S; Feng C; Hou Z; Cai J; Wang Y; Hui R; Lv B; Zhang W Biochim Biophys Acta Mol Basis Dis; 2019 Jul; 1865(7):1772-1781. PubMed ID: 29940270 [TBL] [Abstract][Full Text] [Related]
13. Activating transcription factor 3 is a potential target and a new biomarker for the prognosis of atherosclerosis. Qin W; Yang H; Liu G; Bai R; Bian Y; Yang Z; Xiao C Hum Cell; 2021 Jan; 34(1):49-59. PubMed ID: 32959354 [TBL] [Abstract][Full Text] [Related]
15. Silencing of CD40 in vivo reduces progression of experimental atherogenesis through an NF-κB/miR-125b axis and reveals new potential mediators in the pathogenesis of atherosclerosis. Hueso M; De Ramon L; Navarro E; Ripoll E; Cruzado JM; Grinyo JM; Torras J Atherosclerosis; 2016 Dec; 255():80-89. PubMed ID: 27835742 [TBL] [Abstract][Full Text] [Related]
16. Macrophage iron retention aggravates atherosclerosis: Evidence for the role of autocrine formation of hepcidin in plaque macrophages. Xiao L; Luo G; Guo X; Jiang C; Zeng H; Zhou F; Li Y; Yu J; Yao P Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158531. PubMed ID: 31666189 [TBL] [Abstract][Full Text] [Related]
17. Identification and validation of senescence-related genes in circulating endothelial cells of patients with acute myocardial infarction. Xiang J; Shen J; Zhang L; Tang B Front Cardiovasc Med; 2022; 9():1057985. PubMed ID: 36582740 [TBL] [Abstract][Full Text] [Related]
18. The macrophage C-type lectin receptor CLEC5A (MDL-1) expression is associated with early plaque progression and promotes macrophage survival. Xiong W; Wang H; Lu L; Xi R; Wang F; Gu G; Tao R J Transl Med; 2017 Nov; 15(1):234. PubMed ID: 29126450 [TBL] [Abstract][Full Text] [Related]
19. The feedback loop of "EMMPRIN/NF-κB" worsens atherosclerotic plaque via suppressing autophagy in macrophage. Liang X; Hou X; Yang Y; Liu H; Guo R; Yang Z; Yang L J Mol Cell Cardiol; 2018 Jan; 114():129-140. PubMed ID: 29154780 [TBL] [Abstract][Full Text] [Related]
20. Quercetin alleviates atherosclerosis by suppressing oxidized LDL-induced senescence in plaque macrophage via inhibiting the p38MAPK/p16 pathway. Luo G; Xiang L; Xiao L J Nutr Biochem; 2023 Jun; 116():109314. PubMed ID: 36924853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]