These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38062246)

  • 1. Fecal Deployment: An Alternative Way of Defensive Host Plant Cardenolide Use by Lilioceris merdigera Larvae.
    Baum M; Dobler S
    J Chem Ecol; 2024 Feb; 50(1-2):63-70. PubMed ID: 38062246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional evidence for physiological mechanisms to circumvent neurotoxicity of cardenolides in an adapted and a non-adapted hawk-moth species.
    Petschenka G; Pick C; Wagschal V; Dobler S
    Proc Biol Sci; 2013 May; 280(1759):20123089. PubMed ID: 23516239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardenolide Intake, Sequestration, and Excretion by the Monarch Butterfly along Gradients of Plant Toxicity and Larval Ontogeny.
    Jones PL; Petschenka G; Flacht L; Agrawal AA
    J Chem Ecol; 2019 Mar; 45(3):264-277. PubMed ID: 30793231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular adaptation of Chrysochus leaf beetles to toxic compounds in their food plants.
    Labeyrie E; Dobler S
    Mol Biol Evol; 2004 Feb; 21(2):218-21. PubMed ID: 12949136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unexpected reactions of a generalist predator towards defensive devices of cassidine larvae (Coleoptera, Chrysomelidae).
    Müller C; Hilker M
    Oecologia; 1999 Feb; 118(2):166-172. PubMed ID: 28307691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase.
    Dobler S; Dalla S; Wagschal V; Agrawal AA
    Proc Natl Acad Sci U S A; 2012 Aug; 109(32):13040-5. PubMed ID: 22826239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and environmental sources of variation in the autogenous chemical defense of a leaf beetle.
    Triponez Y; Naisbit RE; Jean-Denis JB; Rahier M; Alvarez N
    J Chem Ecol; 2007 Nov; 33(11):2011-24. PubMed ID: 17885795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus L. Reared on milkweed plants in California: 2.Asclepias speciosa.
    Brower LP; Seiber JN; Nelson CJ; Lynch SP; Holland MM
    J Chem Ecol; 1984 Apr; 10(4):601-39. PubMed ID: 24318600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ABCB transporters in a leaf beetle respond to sequestered plant toxins.
    Kowalski P; Baum M; Körten M; Donath A; Dobler S
    Proc Biol Sci; 2020 Sep; 287(1934):20201311. PubMed ID: 32873204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of cardenolides as feeding deterrents toPeromyscus mice.
    Glendinning JI
    J Chem Ecol; 1992 Sep; 18(9):1559-75. PubMed ID: 24254287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fecal shield is a double-edged sword for larvae of a leaf beetle.
    Huang ZZ; Dong ZQ; Liang ZL; Zhang B; Xue HJ; Ge SQ
    Curr Zool; 2023 Apr; 69(2):173-180. PubMed ID: 37091996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal and intraplant variation of cardenolide content in the California milkweed,Asclepias eriocarpa, and implications for plant defense.
    Nelson CJ; Seiber JN; Brower LP
    J Chem Ecol; 1981 Nov; 7(6):981-1010. PubMed ID: 24420825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nutrition-defence trade-off drives diet choice in a toxic plant generalist.
    Carlson NJ; Agrawal AA
    Proc Biol Sci; 2023 Aug; 290(2004):20230987. PubMed ID: 37554038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chlorophyll catabolite, pheophorbide a, confers predation resistance in a larval tortoise beetle shield defense.
    Vencl FV; Gómez NE; Ploss K; Boland W
    J Chem Ecol; 2009 Mar; 35(3):281-8. PubMed ID: 19127385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of Milkweed Leaves and Latex: Chromatographic Quantification Versus Biological Activity of Cardenolides in 16 Asclepias Species.
    Züst T; Petschenka G; Hastings AP; Agrawal AA
    J Chem Ecol; 2019 Jan; 45(1):50-60. PubMed ID: 30523520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores.
    Mirzaei M; Züst T; Younkin GC; Hastings AP; Alani ML; Agrawal AA; Jander G
    J Chem Ecol; 2020 Dec; 46(11-12):1131-1143. PubMed ID: 33180277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid substitutions of Na,K-ATPase conferring decreased sensitivity to cardenolides in insects compared to mammals.
    Dalla S; Swarts HG; Koenderink JB; Dobler S
    Insect Biochem Mol Biol; 2013 Dec; 43(12):1109-15. PubMed ID: 24121093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-specific plant toxins and adaptation in a specialist root herbivore.
    Agrawal AA; Hastings AP
    Proc Natl Acad Sci U S A; 2023 May; 120(22):e2302251120. PubMed ID: 37216531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological screening for target site insensitivity and localization of Na(+)/K(+)-ATPase in cardenolide-adapted Lepidoptera.
    Petschenka G; Offe JK; Dobler S
    J Insect Physiol; 2012 May; 58(5):607-12. PubMed ID: 22343317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. No physiological costs of dual sequestration of chemically different plant toxins in the milkweed bug Spilostethus saxatilis (Heteroptera: Lygaeidae).
    Espinosa Del Alba L; Petschenka G
    J Insect Physiol; 2023 Jun; 147():104508. PubMed ID: 37011856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.