BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38062544)

  • 41. A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays.
    O'Grady G; Paskaranandavadivel N; Angeli TR; Du P; Windsor JA; Cheng LK; Pullan AJ
    Physiol Meas; 2011 Mar; 32(3):N13-22. PubMed ID: 21252419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioelectronics for mapping gut activity.
    Farajidavar A
    Brain Res; 2018 Aug; 1693(Pt B):169-173. PubMed ID: 29903619
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: Feasibility and initial results.
    Angeli TR; O'Grady G; Vather R; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2018 Jul; 30(7):e13310. PubMed ID: 29493080
    [TBL] [Abstract][Full Text] [Related]  

  • 44. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.
    O'Grady G; Du P; Cheng LK; Egbuji JU; Lammers WJ; Windsor JA; Pullan AJ
    Am J Physiol Gastrointest Liver Physiol; 2010 Sep; 299(3):G585-92. PubMed ID: 20595620
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Feasibility of gastric electrical stimulation by percutaneous endoscopic transgastric electrodes.
    Sallam HS; Chen JD; Pasricha PJ
    Gastrointest Endosc; 2008 Oct; 68(4):754-9. PubMed ID: 18718585
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clinical application prospects of gastric pacing for treating postoperative gastric motility disorders.
    Li FY; Jiang LS; Cheng JQ; Mao H; Li N; Cheng NS
    J Gastroenterol Hepatol; 2007 Dec; 22(12):2055-9. PubMed ID: 17593227
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extending the automated gastrointestinal analysis pipeline: Removal of invalid slow wave marks in gastric serosal recordings.
    Paskaranandavadivel N; Du P; Erickson J; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1938-41. PubMed ID: 26736663
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An endoscopic wireless gastrostimulator (with video).
    Deb S; Tang SJ; Abell TL; Rao S; Huang WD; To SD; Lahr C; Chiao JC
    Gastrointest Endosc; 2012 Feb; 75(2):411-5, 415.e1. PubMed ID: 22248609
    [TBL] [Abstract][Full Text] [Related]  

  • 50. P-wave detection performance of the BioMonitor III, Confirm Rx and Reveal Linq implantable loop recorders.
    Schreiber T; Cretnik A; Schauerte P; Lacour P; Blaschke F; Biewener S; Suhail S; Tscholl V; Nagel P; Landmesser U; Huemer M; Attanasio P
    J Electrocardiol; 2022; 71():62-66. PubMed ID: 35180446
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gastric dysrhythmias and the current status of electrogastrography.
    Koch KL
    Pract Gastroenterol; 1989; 13(4):37, 41-44. PubMed ID: 11538271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of Electrophysiological Propagation by Multichannel Sensors.
    Bradshaw LA; Kim JH; Somarajan S; Richards WO; Cheng LK
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1751-9. PubMed ID: 26595907
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Patterns of Abnormal Gastric Pacemaking After Sleeve Gastrectomy Defined by Laparoscopic High-Resolution Electrical Mapping.
    Berry R; Cheng LK; Du P; Paskaranandavadivel N; Angeli TR; Mayne T; Beban G; O'Grady G
    Obes Surg; 2017 Aug; 27(8):1929-1937. PubMed ID: 28213666
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-channel gastric pacing in patients with diabetic gastroparesis.
    Lin Z; Sarosiek I; Forster J; Ross RA; Chen JD; McCallum RW
    Neurogastroenterol Motil; 2011 Oct; 23(10):912-e396. PubMed ID: 21806741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach.
    Wang TH; Du P; Angeli TR; Paskaranandavadivel N; Erickson JC; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2018 Jan; 30(1):. PubMed ID: 28695661
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detailed measurements of gastric electrical activity and their implications on inverse solutions.
    Cheng LK; O'Grady G; Du P; Egbuji JU; Windsor JA; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1302-5. PubMed ID: 19963493
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Every slow-wave impulse is associated with motor activity of the human stomach.
    Hocke M; Schöne U; Richert H; Görnert P; Keller J; Layer P; Stallmach A
    Am J Physiol Gastrointest Liver Physiol; 2009 Apr; 296(4):G709-16. PubMed ID: 19095766
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electroacupuncture via chronically implanted electrodes improves gastric dysmotility mediated by autonomic-cholinergic mechanisms in a rodent model of functional dyspepsia.
    Zhang S; Li S; Liu Y; Ye F; Yin J; Foreman RD; Wang D; Chen JDZ
    Neurogastroenterol Motil; 2018 Oct; 30(10):e13381. PubMed ID: 29856090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and Validation of a Surface-Contact Electrode for Gastric Pacing and Concurrent Slow-Wave Mapping.
    Alighaleh S; Cheng L; Angeli-Gordon TR; Aghababaie Z; O'Grady G; Paskaranandavadivel N
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2574-2581. PubMed ID: 33656985
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diabetic gastroparesis alters the biomagnetic signature of the gastric slow wave.
    Bradshaw LA; Cheng LK; Chung E; Obioha CB; Erickson JC; Gorman BL; Somarajan S; Richards WO
    Neurogastroenterol Motil; 2016 Jun; 28(6):837-48. PubMed ID: 26839980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.