These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38062648)

  • 1. Incorporation of climate change into a multiple stressor risk assessment for the Chinook salmon (Oncorhynchus tshawytscha) population in the Yakima River, Washington, USA.
    Landis WG; Mitchell CJ; Hader JD; Nathan R; Sharpe EE
    Integr Environ Assess Manag; 2024 Mar; 20(2):419-432. PubMed ID: 38062648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Metapopulation Dynamics into a Bayesian Network Relative Risk Model: Assessing Risk of Pesticides to Chinook Salmon (Oncorhynchus tshawytscha) in an Ecological Context.
    Mitchell CJ; Lawrence E; Chu VR; Harris MJ; Landis WG; von Stackelberg KE; Stark JD
    Integr Environ Assess Manag; 2021 Jan; 17(1):95-109. PubMed ID: 33064347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Chlorpyrifos Acetylcholinesterase Inhibition, Water Temperature, and Dissolved Oxygen Concentration into a Regional Scale Multiple Stressor Risk Assessment Estimating Risk to Chinook Salmon.
    Landis WG; Chu VR; Graham SE; Harris MJ; Markiewicz AJ; Mitchell CJ; von Stackelberg KE; Stark JD
    Integr Environ Assess Manag; 2020 Jan; 16(1):28-42. PubMed ID: 31379044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating climate model projections into environmental risk assessment: A probabilistic modeling approach.
    Moe SJ; Brix KV; Landis WG; Stauber JL; Carriger JF; Hader JD; Kunimitsu T; Mentzel S; Nathan R; Noyes PD; Oldenkamp R; Rohr JR; van den Brink PJ; Verheyen J; Benestad RE
    Integr Environ Assess Manag; 2024 Mar; 20(2):367-383. PubMed ID: 38084033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Snake River sockeye and Chinook salmon in a changing climate: Implications for upstream migration survival during recent extreme and future climates.
    Crozier LG; Siegel JE; Wiesebron LE; Trujillo EM; Burke BJ; Sandford BP; Widener DL
    PLoS One; 2020; 15(9):e0238886. PubMed ID: 32997674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating climate change model projections into ecological risk assessments to help inform risk management and adaptation strategies: Synthesis of a SETAC Pellston Workshop®.
    Stahl RG; Boxall ABA; Brix KV; Landis WG; Stauber JL; Moe SJ
    Integr Environ Assess Manag; 2024 Mar; 20(2):359-366. PubMed ID: 38124219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive effects of water diversion and climate change for juvenile chinook salmon in the lemhi river basin (USA.).
    Walters AW; Bartz KK; McClure MM
    Conserv Biol; 2013 Dec; 27(6):1179-89. PubMed ID: 24299084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating climate projections in the environmental risk assessment of pesticides in aquatic ecosystems.
    Oldenkamp R; Benestad RE; Hader JD; Mentzel S; Nathan R; Madsen AL; Jannicke Moe S
    Integr Environ Assess Manag; 2024 Mar; 20(2):384-400. PubMed ID: 37795750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signals of large scale climate drivers, hatchery enhancement, and marine factors in Yukon River Chinook salmon survival revealed with a Bayesian life history model.
    Cunningham CJ; Westley PAH; Adkison MD
    Glob Chang Biol; 2018 Sep; 24(9):4399-4416. PubMed ID: 29774975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effects of climate change and bank stabilization on shallow water habitats of chinook salmon.
    Jorgensen JC; McClure MM; Sheer MB; Munn NL
    Conserv Biol; 2013 Dec; 27(6):1201-11. PubMed ID: 24299086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature and dietary pesticide exposure on neuroendocrine and olfactory responses in juvenile Chinook salmon (Oncorhynchus tshawytscha).
    Magnuson JT; Fuller N; McGruer V; Huff Hartz KE; Acuña S; Whitledge GW; Lydy MJ; Schlenk D
    Environ Pollut; 2023 Feb; 318():120938. PubMed ID: 36572271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the effects of climate change and chemical, physical, and biological stressors on nearshore coral reefs: A case study in the Great Barrier Reef, Australia.
    Mentzel S; Nathan R; Noyes P; Brix KV; Moe SJ; Rohr JR; Verheyen J; Van den Brink PJ; Stauber J
    Integr Environ Assess Manag; 2024 Mar; 20(2):401-418. PubMed ID: 38018499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Bayesian network for probabilistic risk assessment of pesticides.
    Mentzel S; Grung M; Tollefsen KE; Stenrød M; Petersen K; Moe SJ
    Integr Environ Assess Manag; 2022 Jun; 18(4):1072-1087. PubMed ID: 34618406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased Use of Bayesian Network Models Has Improved Environmental Risk Assessments.
    Moe SJ; Carriger JF; Glendell M
    Integr Environ Assess Manag; 2021 Jan; 17(1):53-61. PubMed ID: 33205856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary exposure to environmentally relevant pesticide mixtures impairs swimming performance and lipid homeostatic gene expression in Juvenile Chinook salmon at elevated water temperatures.
    Fuller N; Magnuson JT; Huff Hartz KE; Whitledge GW; Acuña S; McGruer V; Schlenk D; Lydy MJ
    Environ Pollut; 2022 Dec; 314():120308. PubMed ID: 36181938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adult spawners: A critical period for subarctic Chinook salmon in a changing climate.
    Howard KG; von Biela V
    Glob Chang Biol; 2023 Apr; 29(7):1759-1773. PubMed ID: 36661402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute Toxicity of 6PPD-Quinone to Early Life Stage Juvenile Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) Salmon.
    Lo BP; Marlatt VL; Liao X; Reger S; Gallilee C; Ross ARS; Brown TM
    Environ Toxicol Chem; 2023 Apr; 42(4):815-822. PubMed ID: 36692118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How riparian and floodplain restoration modify the effects of increasing temperature on adult salmon spawner abundance in the Chehalis River, WA.
    Fogel CB; Nicol CL; Jorgensen JC; Beechie TJ; Timpane-Padgham B; Kiffney P; Seixas G; Winkowski J
    PLoS One; 2022; 17(6):e0268813. PubMed ID: 35687542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can stream and riparian restoration offset climate change impacts to salmon populations?
    Justice C; White SM; McCullough DA; Graves DS; Blanchard MR
    J Environ Manage; 2017 Mar; 188():212-227. PubMed ID: 27984794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing climate change impacts on Pacific salmon and trout using bioenergetics and spatiotemporal explicit river temperature predictions under varying riparian conditions.
    Spanjer AR; Gendaszek AS; Wulfkuhle EJ; Black RW; Jaeger KL
    PLoS One; 2022; 17(5):e0266871. PubMed ID: 35594277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.