BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38062844)

  • 21. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy.
    Li CY; Wu XY; Tong JB; Yang XX; Zhao JL; Zheng QF; Zhao GB; Ma ZJ
    Stem Cell Res Ther; 2015 Apr; 6(1):55. PubMed ID: 25884704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electromagnetic Fields Generated by the IteraCoil Device Differentiate Mesenchymal Stem Progenitor Cells Into the Osteogenic Lineage.
    Haroutunian GG; Tsaghikian A; Fedorova E; Chaurasia P; Gusella GL; Mosoian A
    Bioelectromagnetics; 2022 May; 43(4):245-256. PubMed ID: 35391494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning.
    Ferreira JR; Teixeira GQ; Santos SG; Barbosa MA; Almeida-Porada G; Gonçalves RM
    Front Immunol; 2018; 9():2837. PubMed ID: 30564236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The secretome of mesenchymal stem cells and oxidative stress: challenges and opportunities in cell-free regenerative medicine.
    Rahimi B; Panahi M; Saraygord-Afshari N; Taheri N; Bilici M; Jafari D; Alizadeh E
    Mol Biol Rep; 2021 Jul; 48(7):5607-5619. PubMed ID: 34191238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Static and Electromagnetic Fields Differently Affect Proliferation and Cell Death Through Acid Enhancement of ROS Generation in Mesenchymal Stem Cells.
    Alipour M; Hajipour-Verdom B; Javan M; Abdolmaleki P
    Radiat Res; 2022 Oct; 198(4):384-395. PubMed ID: 35867630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of mesenchymal stem cells in regenerative medicine: A new approach in modern medical science.
    Ebrahimi F; Pirouzmand F; Cosme Pecho RD; Alwan M; Yassen Mohamed M; Ali MS; Hormozi A; Hasanzadeh S; Daei N; Hajimortezayi Z; Zamani M
    Biotechnol Prog; 2023; 39(6):e3374. PubMed ID: 37454344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapeutic potential of electromagnetic fields for tissue engineering and wound healing.
    Saliev T; Mustapova Z; Kulsharova G; Bulanin D; Mikhalovsky S
    Cell Prolif; 2014 Dec; 47(6):485-93. PubMed ID: 25319486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes.
    Yang Y; Tao C; Zhao D; Li F; Zhao W; Wu H
    Bioelectromagnetics; 2010 May; 31(4):277-85. PubMed ID: 20041434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross talk between mesenchymal and glioblastoma stem cells: Communication beyond controversies.
    Bajetto A; Thellung S; Dellacasagrande I; Pagano A; Barbieri F; Florio T
    Stem Cells Transl Med; 2020 Nov; 9(11):1310-1330. PubMed ID: 32543030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells.
    Mayer-Wagner S; Passberger A; Sievers B; Aigner J; Summer B; Schiergens TS; Jansson V; Müller PE
    Bioelectromagnetics; 2011 May; 32(4):283-90. PubMed ID: 21452358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.
    Kim MO; Jung H; Kim SC; Park JK; Seo YK
    Int J Mol Med; 2015 Jan; 35(1):153-60. PubMed ID: 25352086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stable morphological-physiological and neural protein expression changes in rat bone marrow mesenchymal stem cells treated with electromagnetic field and nitric oxide.
    Haghighat N; Abdolmaleki P; Behmanesh M; Satari M
    Bioelectromagnetics; 2017 Dec; 38(8):592-601. PubMed ID: 28782873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.
    Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G
    Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative Proteomic Analysis of the Mesenchymal Stem Cells Secretome from Adipose, Bone Marrow, Placenta and Wharton's Jelly.
    Shin S; Lee J; Kwon Y; Park KS; Jeong JH; Choi SJ; Bang SI; Chang JW; Lee C
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells.
    Liu C; Yu J; Yang Y; Tang X; Zhao D; Zhao W; Wu H
    Bioelectromagnetics; 2013 Sep; 34(6):453-64. PubMed ID: 23589052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene expression profile of immunoregulatory cytokines secreted from bone marrow and adipose derived human mesenchymal stem cells in early and late passages.
    Moghadam M; Tokhanbigli S; Baghaei K; Farivar S; Asadzadeh Aghdaei H; Zali MR
    Mol Biol Rep; 2020 Mar; 47(3):1723-1732. PubMed ID: 32040706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An update on human periapical cyst-mesenchymal stem cells and their potential applications in regenerative medicine.
    Ayoub S; Berbéri A; Fayyad-Kazan M
    Mol Biol Rep; 2020 Mar; 47(3):2381-2389. PubMed ID: 32026284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulatory-compliant conditions during cell product manufacturing enhance in vitro immunomodulatory properties of infrapatellar fat pad-derived mesenchymal stem/stromal cells.
    Kouroupis D; Bowles AC; Greif DN; Leñero C; Best TM; Kaplan LD; Correa D
    Cytotherapy; 2020 Nov; 22(11):677-689. PubMed ID: 32723596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability.
    Amiri F; Jahanian-Najafabadi A; Roudkenar MH
    Cell Stress Chaperones; 2015 Mar; 20(2):237-51. PubMed ID: 25527070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.