These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38062967)

  • 1. [Regulation of Metabolism and the Role of Redox Factors in the Energy Control of Quiescence and Proliferation of Hematopoietic Cells].
    Kalashnikova MV; Polyakova NS; Belyavsky AV
    Mol Biol (Mosk); 2023; 57(6):1175-1187. PubMed ID: 38062967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress and hypoxia in normal and leukemic stem cells.
    Testa U; Labbaye C; Castelli G; Pelosi E
    Exp Hematol; 2016 Jul; 44(7):540-60. PubMed ID: 27179622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia and metabolic properties of hematopoietic stem cells.
    Zhang CC; Sadek HA
    Antioxid Redox Signal; 2014 Apr; 20(12):1891-901. PubMed ID: 23621582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysosomes and Their Role in Regulating the Metabolism of Hematopoietic Stem Cells.
    Arif T
    Biology (Basel); 2022 Sep; 11(10):. PubMed ID: 36290314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HSC-derived fatty acid oxidation in steady-state and stressed hematopoiesis.
    Mistry JJ; Bowles K; Rushworth SA
    Exp Hematol; 2023 Jan; 117():1-8. PubMed ID: 36223830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Context-dependent modification of PFKFB3 in hematopoietic stem cells promotes anaerobic glycolysis and ensures stress hematopoiesis.
    Watanuki S; Kobayashi H; Sugiura Y; Yamamoto M; Karigane D; Shiroshita K; Sorimachi Y; Fujita S; Morikawa T; Koide S; Oshima M; Nishiyama A; Murakami K; Haraguchi M; Tamaki S; Yamamoto T; Yabushita T; Tanaka Y; Nagamatsu G; Honda H; Okamoto S; Goda N; Tamura T; Nakamura-Ishizu A; Suematsu M; Iwama A; Suda T; Takubo K
    Elife; 2024 Apr; 12():. PubMed ID: 38573813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxisome proliferator-activated-γ coactivator-1α-mediated mitochondrial biogenesis is important for hematopoietic recovery in response to stress.
    Basu S; Broxmeyer HE; Hangoc G
    Stem Cells Dev; 2013 Jun; 22(11):1678-92. PubMed ID: 23311338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic regulation of hematopoietic and leukemic stem/progenitor cells under homeostatic and stress conditions.
    Karigane D; Takubo K
    Int J Hematol; 2017 Jul; 106(1):18-26. PubMed ID: 28540498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells.
    Kocabas F; Zheng J; Thet S; Copeland NG; Jenkins NA; DeBerardinis RJ; Zhang C; Sadek HA
    Blood; 2012 Dec; 120(25):4963-72. PubMed ID: 22995899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mito-managing ROS & redox to reboot the immune system: Tapping mitochondria & redox management to extend the reach of hematopoietic stem cell transplantation.
    Mohrin M
    Free Radic Biol Med; 2021 Mar; 165():38-53. PubMed ID: 33486089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyruvate dehydrogenase kinase 1 is essential for transplantable mouse bone marrow hematopoietic stem cell and progenitor function.
    Halvarsson C; Eliasson P; Jönsson JI
    PLoS One; 2017; 12(2):e0171714. PubMed ID: 28182733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Cellular Bioenergetics in Mouse Hematopoietic Stem and Primitive Progenitor Cells using the Extracellular Flux Analyzer.
    Kumar S; Jones M; Li Q; Lombard DB
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34633378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo.
    Broxmeyer HE; O'Leary HA; Huang X; Mantel C
    Curr Opin Hematol; 2015 Jul; 22(4):273-8. PubMed ID: 26049746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular regulation of hematopoietic stem cell quiescence.
    Chen Z; Guo Q; Song G; Hou Y
    Cell Mol Life Sci; 2022 Mar; 79(4):218. PubMed ID: 35357574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD36-Mediated Fatty Acid Oxidation in Hematopoietic Stem Cells Is a Novel Mechanism of Emergency Hematopoiesis in Response to Infection.
    Maryanovich M; Ito K
    Immunometabolism; 2022; 4(2):. PubMed ID: 35465142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53-TP53-Induced Glycolysis Regulator Mediated Glycolytic Suppression Attenuates DNA Damage and Genomic Instability in Fanconi Anemia Hematopoietic Stem Cells.
    Li X; Wu L; Zopp M; Kopelov S; Du W
    Stem Cells; 2019 Jul; 37(7):937-947. PubMed ID: 30977208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche.
    Simsek T; Kocabas F; Zheng J; Deberardinis RJ; Mahmoud AI; Olson EN; Schneider JW; Zhang CC; Sadek HA
    Cell Stem Cell; 2010 Sep; 7(3):380-90. PubMed ID: 20804973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The new metabolic needs of hematopoietic stem cells.
    Bartram J; Filippi MD
    Curr Opin Hematol; 2022 Jul; 29(4):188-193. PubMed ID: 35787547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Regulation of Hematopoietic Stem Cells.
    Morganti C; Cabezas-Wallscheid N; Ito K
    Hemasphere; 2022 Jul; 6(7):e740. PubMed ID: 35785147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surviving change: the metabolic journey of hematopoietic stem cells.
    Kohli L; Passegué E
    Trends Cell Biol; 2014 Aug; 24(8):479-87. PubMed ID: 24768033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.