These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38063021)

  • 1. Encapsulation of
    Jegatheeswaran S; Tan JH; Fraser AG; Hwang DK
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):59037-59043. PubMed ID: 38063021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer-Salt Aqueous Two-Phase System (ATPS) Micro-Droplets for Cell Encapsulation.
    Mastiani M; Firoozi N; Petrozzi N; Seo S; Kim M
    Sci Rep; 2019 Oct; 9(1):15561. PubMed ID: 31664112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform.
    Navi M; Abbasi N; Jeyhani M; Gnyawali V; Tsai SSH
    Lab Chip; 2018 Nov; 18(22):3361-3370. PubMed ID: 30375625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic generation of ATPS droplets by transient double emulsion technique.
    Zhou C; Zhu P; Han X; Shi R; Tian Y; Wang L
    Lab Chip; 2021 Jul; 21(14):2684-2690. PubMed ID: 34170274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous Two-Phase System (ATPS)-Based Polymersomes for Particle Isolation and Separation.
    Seo H; Nam C; Kim E; Son J; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55467-55475. PubMed ID: 33237722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shrinking, growing, and bursting: microfluidic equilibrium control of water-in-water droplets.
    Moon BU; Hwang DK; Tsai SS
    Lab Chip; 2016 Jul; 16(14):2601-8. PubMed ID: 27314278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Aqueous Two-Phase System Droplet Generation by Oil-Free Passive Microfluidics.
    Mastiani M; Seo S; Mosavati B; Kim M
    ACS Omega; 2018 Aug; 3(8):9296-9302. PubMed ID: 31459062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Generation of Particle-Stabilized Water-in-Water Emulsions.
    Abbasi N; Navi M; Tsai SSH
    Langmuir; 2018 Jan; 34(1):213-218. PubMed ID: 29231744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans.
    Aubry G; Zhan M; Lu H
    Lab Chip; 2015 Mar; 15(6):1424-31. PubMed ID: 25622546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-laden microgel prepared using a biocompatible aqueous two-phase strategy.
    Liu Y; Nambu NO; Taya M
    Biomed Microdevices; 2017 Sep; 19(3):55. PubMed ID: 28612283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A droplet microchip with substance exchange capability for the developmental study of C. elegans.
    Wen H; Yu Y; Zhu G; Jiang L; Qin J
    Lab Chip; 2015 Apr; 15(8):1905-11. PubMed ID: 25715864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Devices in Advanced Caenorhabditis elegans Research.
    Muthaiyan Shanmugam M; Subhra Santra T
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27490525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.
    Moon BU; Jones SG; Hwang DK; Tsai SS
    Lab Chip; 2015 Jun; 15(11):2437-44. PubMed ID: 25906146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-the-Fly Phase Transition and Density Changes of Aqueous Two-Phase Systems on a Centrifugal Microfluidic Platform.
    Moon BU; Clime L; Hernandez-Castro JA; Brassard D; Nassif C; Malic L; Veres T
    Langmuir; 2022 Jan; 38(1):79-85. PubMed ID: 34928624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-flow C. elegans fluorescence expression analysis with real-time image processing through microfluidics.
    Yan Y; Boey D; Ng LT; Gruber J; Bettiol A; Thakor NV; Chen CH
    Biosens Bioelectron; 2016 Mar; 77():428-34. PubMed ID: 26452079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of Live Caenorhabditis elegans Individuals Using an Ultra-thin Polydimethylsiloxane Microfluidic Chip with Water Retention.
    Suzuki M; Sakashita T; Funayama T
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30958474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organoclay-assisted interfacial polymerization for microfluidic production of monodisperse PEG-microdroplets and in situ encapsulation of E. coli.
    Wang KW; Lee KG; Park TJ; Lee YC; Yang JW; Kim DH; Lee SJ; Park JY
    Biotechnol Bioeng; 2012 Jan; 109(1):289-94. PubMed ID: 21809335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.