These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38063251)

  • 21. A two-step filtering-based iterative image reconstruction method for interior tomography.
    Zhang H; Li L; Yan B; Wang L; Cai A; Hu G
    J Xray Sci Technol; 2016 Oct; 24(5):733-747. PubMed ID: 27392828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radial differential interior tomography and its image reconstruction with differentiated backprojection and projection onto convex sets.
    Tang S; Tang X
    Med Phys; 2013 Sep; 40(9):091914. PubMed ID: 24007165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph.
    Lu S; Li S; Wang Y; Zhang L; Hu Y; Li B
    Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35100576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exact fan-beam image reconstruction algorithm for truncated projection data acquired from an asymmetric half-size detector.
    Leng S; Zhuang T; Nett BE; Chen GH
    Phys Med Biol; 2005 Apr; 50(8):1805-20. PubMed ID: 15815097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical validation of CT image reconstruction with interior tomography.
    Ge G; Zhang J; Winkler M; Lumby C; Cong W; Wang G
    J Xray Sci Technol; 2018; 26(2):303-309. PubMed ID: 29562569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RISING: A new framework for model-based few-view CT image reconstruction with deep learning.
    Evangelista D; Morotti E; Loli Piccolomini E
    Comput Med Imaging Graph; 2023 Jan; 103():102156. PubMed ID: 36528018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-Subject Deep-Learning Image Reconstruction With a Neural Optimization Transfer Algorithm for PET-Enabled Dual-Energy CT Imaging.
    Li S; Zhu Y; Spencer BA; Wang G
    IEEE Trans Image Process; 2024; 33():4075-4089. PubMed ID: 38941203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Reconstruction from CT truncated data based on dual-domain transformer coupled feature learning].
    Wang C; Meng M; Li M; Wang Y; Zeng D; Bian Z; Ma J
    Nan Fang Yi Ke Da Xue Xue Bao; 2024 May; 44(5):950-959. PubMed ID: 38862453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior.
    Kang Y; Liu J; Wu F; Wang K; Qiang J; Hu D; Zhang Y
    Comput Methods Programs Biomed; 2024 Feb; 244():108010. PubMed ID: 38199137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Region-of-interest material decomposition from truncated energy-resolved CT.
    Schmidt TG; Pektas F
    Med Phys; 2011 Oct; 38(10):5657-66. PubMed ID: 21992382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.
    Fahimian BP; Zhao Y; Huang Z; Fung R; Mao Y; Zhu C; Khatonabadi M; DeMarco JJ; Osher SJ; McNitt-Gray MF; Miao J
    Med Phys; 2013 Mar; 40(3):031914. PubMed ID: 23464329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Truncation effect reduction for fast iterative reconstruction in cone-beam CT.
    Aootaphao S; Thongvigitmanee SS; Puttawibul P; Thajchayapong P
    BMC Med Imaging; 2022 Sep; 22(1):160. PubMed ID: 36064374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Image reconstruction in regions-of-interest from truncated projections in a reduced fan-beam scan.
    Zou Y; Pan X; Sidky EY
    Phys Med Biol; 2005 Jan; 50(1):13-27. PubMed ID: 15715419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep learning-based PET image denoising and reconstruction: a review.
    Hashimoto F; Onishi Y; Ote K; Tashima H; Reader AJ; Yamaya T
    Radiol Phys Technol; 2024 Mar; 17(1):24-46. PubMed ID: 38319563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A general region-of-interest image reconstruction approach with truncated Hilbert transform.
    Li L; Kang K; Chen Z; Zhang L; Xing Y
    J Xray Sci Technol; 2009; 17(2):135-52. PubMed ID: 19696467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A two-step Hilbert transform method for 2D image reconstruction.
    Noo F; Clackdoyle R; Pack JD
    Phys Med Biol; 2004 Sep; 49(17):3903-23. PubMed ID: 15470913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Image reconstruction in peripheral and central regions-of-interest and data redundancy.
    Pan X; Zou Y; Xia D
    Med Phys; 2005 Mar; 32(3):673-84. PubMed ID: 15839339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.