These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38063271)

  • 1. Direct evidence of lipid transport by the Drs2-Cdc50 flippase upon truncation of its terminal regions.
    Herrera SA; Justesen BH; Dieudonné T; Montigny C; Nissen P; Lenoir G; Günther Pomorski T
    Protein Sci; 2023 Dec; 33(3):e4855. PubMed ID: 38063271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High phosphatidylinositol 4-phosphate (PI4P)-dependent ATPase activity for the Drs2p-Cdc50p flippase after removal of its N- and C-terminal extensions.
    Azouaoui H; Montigny C; Dieudonné T; Champeil P; Jacquot A; Vázquez-Ibar JL; Le Maréchal P; Ulstrup J; Ash MR; Lyons JA; Nissen P; Lenoir G
    J Biol Chem; 2017 May; 292(19):7954-7970. PubMed ID: 28302728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-yield co-expression system for the purification of an intact Drs2p-Cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate.
    Azouaoui H; Montigny C; Ash MR; Fijalkowski F; Jacquot A; Grønberg C; López-Marqués RL; Palmgren MG; Garrigos M; le Maire M; Decottignies P; Gourdon P; Nissen P; Champeil P; Lenoir G
    PLoS One; 2014; 9(11):e112176. PubMed ID: 25393116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto-inhibition of Drs2p, a yeast phospholipid flippase, by its carboxyl-terminal tail.
    Zhou X; Sebastian TT; Graham TR
    J Biol Chem; 2013 Nov; 288(44):31807-15. PubMed ID: 24045945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P4-ATPase subunit Cdc50 plays a role in yeast budding and cell wall integrity in Candida glabrata.
    Chen KZ; Wang LL; Liu JY; Zhao JT; Huang SJ; Xiang MJ
    BMC Microbiol; 2023 Apr; 23(1):99. PubMed ID: 37046215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P-Type ATPase Apt1 of the Fungal Pathogen
    Stanchev LD; Rizzo J; Peschel R; Pazurek LA; Bredegaard L; Veit S; Laerbusch S; Rodrigues ML; López-Marqués RL; Günther Pomorski T
    J Fungi (Basel); 2021 Oct; 7(10):. PubMed ID: 34682264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Analysis of the P-Type ATPases Apt2-4 from
    Veit S; Laerbusch S; López-Marqués RL; Günther Pomorski T
    J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of novel mutations in CDC50, the non-catalytic subunit of the Drs2p phospholipid flippase.
    Takahashi Y; Fujimura-Kamada K; Kondo S; Tanaka K
    J Biochem; 2011 Apr; 149(4):423-32. PubMed ID: 21212072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery.
    Bryde S; Hennrich H; Verhulst PM; Devaux PF; Lenoir G; Holthuis JC
    J Biol Chem; 2010 Dec; 285(52):40562-72. PubMed ID: 20961850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.
    Takeda M; Yamagami K; Tanaka K
    Eukaryot Cell; 2014 Mar; 13(3):363-75. PubMed ID: 24390140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP2, The essential P4-ATPase of malaria parasites, catalyzes lipid-stimulated ATP hydrolysis in complex with a Cdc50 β-subunit.
    Lamy A; Macarini-Bruzaferro E; Dieudonné T; Perálvarez-Marín A; Lenoir G; Montigny C; le Maire M; Vázquez-Ibar JL
    Emerg Microbes Infect; 2021 Dec; 10(1):132-147. PubMed ID: 33372863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct lipid transporters together regulate invasive filamentous growth in the human fungal pathogen Candida albicans.
    Basante-Bedoya MA; Bogliolo S; Garcia-Rodas R; Zaragoza O; Arkowitz RA; Bassilana M
    PLoS Genet; 2022 Dec; 18(12):e1010549. PubMed ID: 36516161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner.
    Takatsu H; Baba K; Shima T; Umino H; Kato U; Umeda M; Nakayama K; Shin HW
    J Biol Chem; 2011 Nov; 286(44):38159-38167. PubMed ID: 21914794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lipid flippase Drs2 regulates anterograde transport of Atg9 during autophagy.
    Kriegenburg F; Huiting W; van Buuren-Broek F; Zwilling E; Hardenberg R; Mari M; Kraft C; Reggiori F
    Autophagy Rep; 2022 Aug; 1(1):345-367. PubMed ID: 38106996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry.
    Takar M; Huang Y; Graham TR
    J Lipid Res; 2019 May; 60(5):1032-1042. PubMed ID: 30824614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae.
    Huang Y; Takar M; Best JT; Graham TR
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoinhibition and regulation by phosphoinositides of ATP8B1, a human lipid flippase associated with intrahepatic cholestatic disorders.
    Dieudonné T; Herrera SA; Laursen MJ; Lejeune M; Stock C; Slimani K; Jaxel C; Lyons JA; Montigny C; Pomorski TG; Nissen P; Lenoir G
    Elife; 2022 Apr; 11():. PubMed ID: 35416773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid specific activation of the murine P4-ATPase Atp8a1 (ATPase II).
    Paterson JK; Renkema K; Burden L; Halleck MS; Schlegel RA; Williamson P; Daleke DL
    Biochemistry; 2006 Apr; 45(16):5367-76. PubMed ID: 16618126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport mechanism of P4 ATPase phosphatidylcholine flippases.
    Bai L; You Q; Jain BK; Duan HD; Kovach A; Graham TR; Li H
    Elife; 2020 Dec; 9():. PubMed ID: 33320091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel phosphatidylinositol flippases contribute to phosphoinositide homeostasis in the plasma membrane.
    Muranaka Y; Shigetomi R; Iwasaki Y; Hamamoto A; Nakayama K; Takatsu H; Shin HW
    Biochem J; 2024 Sep; 481(18):1187-1202. PubMed ID: 39258799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.