These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38063705)

  • 1. Mössbauer Study on the Conversion of Different Iron-Based Catalysts Used in Carbon Nanotube Synthesis.
    Kořenek M; Ivanova T; Svačinová V; Mašláň M
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing Ultralong Carbon Nanotube Growth from Methane over Mono- and Bi-Metallic Iron Chloride Catalysts.
    Yick T; Gangoli VS; Orbaek White A
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes.
    Palizdar M; Ahgababazadeh R; Mirhabibi A; Brydson R; Pilehvari S
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5345-51. PubMed ID: 21770187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Transformation of Ferrocene into Carbon-Encapsulated Iron Carbide Nanoparticles at High Pressures and Temperatures.
    Baskakov AO; Lyubutin IS; Starchikov SS; Davydov VA; Kulikova LF; Egorova TB; Agafonov VN
    Inorg Chem; 2018 Dec; 57(23):14895-14903. PubMed ID: 30411622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron changes in natural and Fe(III) loaded montmorillonite during carbon nanotube growth.
    Bakandritsos A; Simopoulos A; Petridis D
    Nanotechnology; 2006 Feb; 17(4):1112-7. PubMed ID: 21727389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes.
    Donato MG; Galvagno S; Lanza M; Messina G; Milone C; Piperopoulos E; Pistone A; Santangelo S
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3815-23. PubMed ID: 19504925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Synthesis of Fe/nitrogen-doped Carbon Nanotube/Nanoparticle Composite and Its Catalytic Performance in Oxygen Reduction].
    Yang TT; Zhu NW; Lu Y; Wu PX
    Huan Jing Ke Xue; 2016 Jan; 37(1):350-8. PubMed ID: 27078977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Purity Single Wall Carbon Nanotube by Oxygen-Containing Functional Group of Ferrocene-Derived Catalyst Precursor by Floating Catalyst Chemical Vapor Deposition.
    Moon SY; Jeon SY; Lee SH; Lee A; Kim SM
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of catalyst structures on carbon nanotubes growth via methane-CVD.
    Wang H; Sun L; Wang S; Xiao Z
    J Nanosci Nanotechnol; 2009 Feb; 9(2):848-52. PubMed ID: 19441406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Tubular Forest-like and Other Carbon Structures Using Distinct Carbon Sources and Catalyst Concentrations.
    García BO; Kharissova OV; Dias HVR; Kharisov BI
    Recent Pat Nanotechnol; 2020; 14(2):153-162. PubMed ID: 31702524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of Iron Nanoparticles in Arrays of Vertically Aligned Carbon Nanotubes Grown by Chemical Vapor Deposition.
    Okotrub AV; Gorodetskiy DV; Gusel'nikov AV; Kondranova AM; Bulusheva LG; Korabovska M; Meija R; Erts D
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer-Tropsch Catalysts.
    Xie J; Torres Galvis HM; Koeken AC; Kirilin A; Dugulan AI; Ruitenbeek M; de Jong KP
    ACS Catal; 2016 Jun; 6(6):4017-4024. PubMed ID: 27330847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube synthesis in supercritical toluene.
    Lee DC; Mikulec FV; Korgel BA
    J Am Chem Soc; 2004 Apr; 126(15):4951-7. PubMed ID: 15080701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fantastic improvement in quality and quantity of carbon nanotubes synthesized on Al2O3-SiO2 supports by N2 pretreatment.
    Ghanbari H; Aghababazadeh R; Mirhabibi A; Brydson RM
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8835-43. PubMed ID: 22400268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature programmed CVD: a novel technique to investigate carbon nanotube synthesis on FeMo/MgO catalysts.
    Teixeira AP; Lemos BR; Magalhães LA; Ardisson JD; Lago RM; Furtado CA; Santos AP
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2661-7. PubMed ID: 22755105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct synthesis of carbon nanofibers from South African coal fly ash.
    Hintsho N; Shaikjee A; Masenda H; Naidoo D; Billing D; Franklyn P; Durbach S
    Nanoscale Res Lett; 2014; 9(1):387. PubMed ID: 25177215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithiumpyridinyl-Driven Synthesis of High-Purity Zero-Valent Iron Nanoparticles and Their Use in Follow-Up Reactions.
    Egeberg A; Block T; Janka O; Wenzel O; Gerthsen D; Pöttgen R; Feldmann C
    Small; 2019 Sep; 15(37):e1902321. PubMed ID: 31328863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-oxide aerogel and xerogel catalyst formulations: characterization by 57Fe Mössbauer and XAFS spectroscopies.
    Huggins FE; Bali S; Huffman GP; Eyring EM
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jun; 76(1):74-83. PubMed ID: 20359941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts.
    Xu J; Bartholomew CH
    J Phys Chem B; 2005 Feb; 109(6):2392-403. PubMed ID: 16851234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the size and the activity of Fe particles for synthesis of carbon nanotubes.
    Chee SW; Sharma R
    Micron; 2012 Nov; 43(11):1181-7. PubMed ID: 22349468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.