These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38063765)

  • 61. Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids.
    Jo JW; Choi J; García de Arquer FP; Seifitokaldani A; Sun B; Kim Y; Ahn H; Fan J; Quintero-Bermudez R; Kim J; Choi MJ; Baek SW; Proppe AH; Walters G; Nam DH; Kelley S; Hoogland S; Voznyy O; Sargent EH
    Nano Lett; 2018 Jul; 18(7):4417-4423. PubMed ID: 29912564
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Silicon Quantum Dots: Promising Theranostic Probes for the Future.
    Sivasankarapillai VS; Jose J; Shanavas MS; Marathakam A; Uddin MS; Mathew B
    Curr Drug Targets; 2019; 20(12):1255-1263. PubMed ID: 30961492
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Integration of Diamond-Based Quantum Emitters with Nanophotonic Circuits.
    Schrinner PPJ; Olthaus J; Reiter DE; Schuck C
    Nano Lett; 2020 Nov; 20(11):8170-8177. PubMed ID: 33136413
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electron-Transport Layers Employing Strongly Bound Ligands Enhance Stability in Colloidal Quantum Dot Infrared Photodetectors.
    Zhang Y; Vafaie M; Xu J; Pina JM; Xia P; Najarian AM; Atan O; Imran M; Xie K; Hoogland S; Sargent EH
    Adv Mater; 2022 Nov; 34(47):e2206884. PubMed ID: 36134538
    [TBL] [Abstract][Full Text] [Related]  

  • 65. State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications.
    Khan ME; Mohammad A; Yoon T
    Chemosphere; 2022 Sep; 302():134815. PubMed ID: 35526688
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers.
    Kress SJP; Cui J; Rohner P; Kim DK; Antolinez FV; Zaininger KA; Jayanti SV; Richner P; McPeak KM; Poulikakos D; Norris DJ
    Sci Adv; 2017 Sep; 3(9):e1700688. PubMed ID: 28948219
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Vertically Emitting Indium Phosphide Nanowire Lasers.
    Xu WZ; Ren FF; Jevtics D; Hurtado A; Li L; Gao Q; Ye J; Wang F; Guilhabert B; Fu L; Lu H; Zhang R; Tan HH; Dawson MD; Jagadish C
    Nano Lett; 2018 Jun; 18(6):3414-3420. PubMed ID: 29781625
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ultrafast Cascade Charge Transfer in Multibandgap Colloidal Quantum Dot Solids Enables Threshold Reduction for Optical Gain and Stimulated Emission.
    Taghipour N; Dalmases M; Whitworth GL; Wang Y; Konstantatos G
    Nano Lett; 2023 Sep; 23(18):8637-8642. PubMed ID: 37724790
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.
    Wang H; Wang Y; He B; Li W; Sulaman M; Xu J; Yang S; Tang Y; Zou B
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18526-33. PubMed ID: 27176547
    [TBL] [Abstract][Full Text] [Related]  

  • 70. On-Chip Integrated Quantum-Dot-Silicon-Nitride Microdisk Lasers.
    Xie W; Stöferle T; Rainò G; Aubert T; Bisschop S; Zhu Y; Mahrt RF; Geiregat P; Brainis E; Hens Z; Van Thourhout D
    Adv Mater; 2017 Apr; 29(16):. PubMed ID: 28198049
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High-Performance and Stable Colloidal Quantum Dots Imager via Energy Band Engineering.
    Zhang L; Chen L; Yang J; Liu J; Lu S; Liang X; Zhao X; Yang Y; Hu J; Hu L; Lan X; Zhang J; Gao L; Tang J
    Nano Lett; 2023 Jul; 23(14):6489-6496. PubMed ID: 37433227
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices.
    Davanco M; Liu J; Sapienza L; Zhang CZ; De Miranda Cardoso JV; Verma V; Mirin R; Nam SW; Liu L; Srinivasan K
    Nat Commun; 2017 Oct; 8(1):889. PubMed ID: 29026109
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Organic Semiconductor Micro/Nanocrystals for Laser Applications.
    Álvarez-Conde J; García-Frutos EM; Cabanillas-Gonzalez J
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33670286
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Perovskite Random Lasers, Process and Prospects.
    Wang L; Yang M; Zhang S; Niu C; Lv Y
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557338
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Low-Threshold, Highly Stable Colloidal Quantum Dot Short-Wave Infrared Laser enabled by Suppression of Trap-Assisted Auger Recombination.
    Taghipour N; Whitworth GL; Othonos A; Dalmases M; Pradhan S; Wang Y; Kumar G; Konstantatos G
    Adv Mater; 2022 Jan; 34(3):e2107532. PubMed ID: 34762320
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Coupled Colloidal Quantum Dot Molecules.
    Koley S; Cui J; Panfil YE; Banin U
    Acc Chem Res; 2021 Mar; 54(5):1178-1188. PubMed ID: 33459013
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Design of on-chip polarimetry with Stokes-determined silicon photonic circuits.
    Fang L; Zheng S; Wang J
    Opt Express; 2021 Sep; 29(20):31026-31035. PubMed ID: 34615204
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hybrid integration of III-V semiconductor lasers on silicon waveguides using optofluidic microbubble manipulation.
    Jung Y; Shim J; Kwon K; You JB; Choi K; Yu K
    Sci Rep; 2016 Jul; 6():29841. PubMed ID: 27431769
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Deterministic Integration of Single Photon Sources in Silicon Based Photonic Circuits.
    Zadeh IE; Elshaari AW; Jöns KD; Fognini A; Dalacu D; Poole PJ; Reimer ME; Zwiller V
    Nano Lett; 2016 Apr; 16(4):2289-94. PubMed ID: 26954298
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Controlled single-mode emission in quantum dot micro-lasers.
    Zhu S; Ma X; Liu C; Luo W; Liu J; Shi B; Guo W; Lau KM
    Opt Express; 2021 Apr; 29(9):13193-13203. PubMed ID: 33985059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.