These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38063805)

  • 1. Photothermally driven decoupling of gas evolution at the solid-liquid interface for boosted photocatalytic hydrogen production.
    Zhao S; Zhang C; Wang S; Lu K; Wang B; Huang J; Peng H; Li N; Liu M
    Nanoscale; 2023 Dec; 16(1):152-162. PubMed ID: 38063805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Lignin Constructing the Gas-Solid Interface for Enhancing the Photothermal Catalytic Water Vapor Splitting.
    Li J; Ding L; Su Z; Li K; Fang F; Sun R; Qin Y; Chang K
    Adv Mater; 2023 Nov; 35(45):e2305535. PubMed ID: 37607503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems.
    Guo S; Li X; Li J; Wei B
    Nat Commun; 2021 Feb; 12(1):1343. PubMed ID: 33637719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong coupling effect at the interface of cobalt phosphate-carbon dots boost photocatalytic water splitting.
    Zhu M; Han M; Zhu C; Hu L; Huang H; Liu Y; Kang Z
    J Colloid Interface Sci; 2018 Nov; 530():256-263. PubMed ID: 29982017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic H
    Yan S; Li Y; Yang X; Jia X; Xu J; Song H
    Adv Mater; 2024 Mar; 36(9):e2307967. PubMed ID: 37910074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Design to Enhance Photocatalytic Hydrogen Evolution via Optimizing Energy and Mass Flows.
    Sun M; Zhou L; Dong T; Huang H; Fang Z; Kou J; Lu C; Xu Z
    ACS Appl Mater Interfaces; 2021 May; 13(18):21207-21216. PubMed ID: 33909395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Hydrogen Peroxide Generation Utilizing Photocatalytic Oxygen Reduction at a Triphase Interface.
    Liu Z; Sheng X; Wang D; Feng X
    iScience; 2019 Jul; 17():67-73. PubMed ID: 31255984
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Zhou X; Fang Y; Cai X; Zhang S; Yang S; Wang H; Zhong X; Fang Y
    ACS Appl Mater Interfaces; 2020 May; 12(18):20579-20588. PubMed ID: 32272011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated p-n/Schottky junctions for efficient photocatalytic hydrogen evolution upon Cu@TiO
    Qiu P; Xiong J; Lu M; Liu L; Li W; Wen Z; Li W; Chen R; Cheng G
    J Colloid Interface Sci; 2022 Sep; 622():924-937. PubMed ID: 35552057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterostructured WS
    Reddy DA; Park H; Ma R; Kumar DP; Lim M; Kim TK
    ChemSusChem; 2017 Apr; 10(7):1563-1570. PubMed ID: 28121391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significant Acceleration of Photocatalytic CO
    Ge Q; Liu Y; Li K; Xie L; Ruan X; Wang W; Wang L; Wang T; You W; Zhang L
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202304189. PubMed ID: 37144910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Coupling Utilization of the Solar Full Spectrum for Promoting Water Splitting Activity over a CIZS Semiconductor.
    Ding L; Li K; Li J; Lu Q; Fang F; Wang T; Chang K
    ACS Nano; 2023 Jun; 17(12):11616-11625. PubMed ID: 37317581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar-to-hydrogen efficiency of more thanĀ 9% in photocatalytic water splitting.
    Zhou P; Navid IA; Ma Y; Xiao Y; Wang P; Ye Z; Zhou B; Sun K; Mi Z
    Nature; 2023 Jan; 613(7942):66-70. PubMed ID: 36600066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoS
    Sui C; Chen K; Zhao L; Zhou L; Wang QQ
    Nanoscale; 2018 Aug; 10(32):15324-15331. PubMed ID: 30069564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic solar hydrogen production from water on a 100-m
    Nishiyama H; Yamada T; Nakabayashi M; Maehara Y; Yamaguchi M; Kuromiya Y; Nagatsuma Y; Tokudome H; Akiyama S; Watanabe T; Narushima R; Okunaka S; Shibata N; Takata T; Hisatomi T; Domen K
    Nature; 2021 Oct; 598(7880):304-307. PubMed ID: 34433207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble-metal-free nickel phosphide modified CdS/C
    Wu T; Wang P; Qian J; Ao Y; Wang C; Hou J
    Dalton Trans; 2017 Oct; 46(40):13793-13801. PubMed ID: 28959817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the photocatalytic hydrogen evolution activity of g-C
    Liu Y; Wu X; Lv H; Cao Y; Ren H
    Dalton Trans; 2019 Jan; 48(4):1217-1225. PubMed ID: 30460956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic coupling-boosted photothermal nanoreactor for efficient solar light-driven photocatalytic water splitting.
    Sun X; Chen Z; Shen Y; Lu J; Shi Y; Cui Y; Guo F; Shi W
    J Colloid Interface Sci; 2023 Dec; 652(Pt A):1016-1027. PubMed ID: 37639924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bubble-water/catalyst triphase interface microenvironment accelerates photocatalytic OER via optimizing semi-hydrophobic OH radical.
    Ren G; Zhou M; Hu P; Chen JF; Wang H
    Nat Commun; 2024 Mar; 15(1):2346. PubMed ID: 38490989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Au/CdS Core-Shell Sensitized Actinomorphic Flower-Like ZnO Nanorods for Enhanced Photocatalytic Water Splitting Performance.
    Li Y; Liu T; Feng S; Yang W; Zhu Y; Zhao Y; Liu Z; Yang H; Fu W
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33477337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.