BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38063818)

  • 41. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress.
    Liu D; Chan SL; de Souza-Pinto NC; Slevin JR; Wersto RP; Zhan M; Mustafa K; de Cabo R; Mattson MP
    Neuromolecular Med; 2006; 8(3):389-414. PubMed ID: 16775390
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer.
    Seo M; Lee YH
    J Mol Biol; 2014 Feb; 426(4):830-42. PubMed ID: 24295899
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaerobic glycolysis is crucial for the maintenance of neural activity in guinea pig hippocampal slices.
    Yamane K; Yokono K; Okada Y
    J Neurosci Methods; 2000 Nov; 103(2):163-71. PubMed ID: 11084209
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accumulation of fructose 1,6-bisphosphate protects clear cell renal cell carcinoma from oxidative stress.
    Wang J; Wu Q; Qiu J
    Lab Invest; 2019 Jun; 99(6):898-908. PubMed ID: 30760861
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of acute, subacute, and chronic diabetes on carbohydrate and energy metabolism in rat sciatic nerve. Relation to mechanisms of peripheral neuropathy.
    Thurston JH; McDougal DB; Hauhart RE; Schulz DW
    Diabetes; 1995 Feb; 44(2):190-5. PubMed ID: 7859940
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolism of round spermatids in the rat: effect of gossypol on the glucose transport.
    Nakamura M; Ikeda M; Okinaga S; Arai K
    Andrologia; 1988; 20(5):411-6. PubMed ID: 3207199
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The dynamic side of the Warburg effect: glycolytic intermediate storage as buffer for fluctuating glucose and O
    van Beek JHGM
    F1000Res; 2018; 7():1177. PubMed ID: 30755789
    [No Abstract]   [Full Text] [Related]  

  • 48. Enhanced cell survival of pH-sensitive bioenergetic nucleotide nanoparticles in energy/oxygen-depleted cells and their intranasal delivery for reduced brain infarction.
    Choi YS; Cho DY; Lee HK; Cho JK; Lee DH; Bae YH; Lee JK; Kang HC
    Acta Biomater; 2016 Sep; 41():147-60. PubMed ID: 27245429
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzymetically regulating the self-healing of protein hydrogels with high healing efficiency.
    Gao Y; Luo Q; Qiao S; Wang L; Dong Z; Xu J; Liu J
    Angew Chem Int Ed Engl; 2014 Aug; 53(35):9343-6. PubMed ID: 25044612
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand.
    Shimizu K; Matsuoka Y
    Biotechnol Adv; 2019; 37(2):284-305. PubMed ID: 30576718
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Glycolytic activity and fructose 2, 6-bisphosphate changes in rat brain during ischemia].
    Yamamoto M
    No To Shinkei; 1990 Apr; 42(4):405-11. PubMed ID: 2143915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of substrate cycling on the ATP yield of sperm glycolysis.
    Hammerstedt RH; Lardy HA
    J Biol Chem; 1983 Jul; 258(14):8759-68. PubMed ID: 6863309
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of fructose 2,6-bisphosphate in the stimulation of glycolysis by anoxia in isolated hepatocytes.
    Hue L
    Biochem J; 1982 Aug; 206(2):359-65. PubMed ID: 6216883
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Liver metabolism during cold ischemic incubation in UW solution in the rat model].
    Dutkowski P; Southard JH; Junginger T
    Langenbecks Arch Chir; 1997; 382(6):343-8. PubMed ID: 9498207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ca2+-induced changes in energy metabolism and viability of melanoma cells.
    Glass-Marmor L; Penso J; Beitner R
    Br J Cancer; 1999 Sep; 81(2):219-24. PubMed ID: 10496345
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hormonal regulation of fructose 2,6-bisphosphate levels in epididymal adipose tissue of rat.
    Sobrino F; Gualberto A
    FEBS Lett; 1985 Mar; 182(2):327-30. PubMed ID: 3884372
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fructose 2,6-bisphosphate-dependent regulation of phosphofructokinase in rat submandibular gland.
    Sugiya H; Fujita Y; Fukushima E; Yamazaki T; Furuyama S
    Int J Biochem; 1988; 20(3):237-41. PubMed ID: 2965659
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius.
    Thevenot T; Brochu D; Vadeboncoeur C; Hamilton IR
    J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fructose 1,6-Bisphosphate as a Protective Agent for Experimental Fat Grafting.
    Lv T; Gu Y; Bi J; Kang N; Yang Z; Fu X; Wang Q; Yan L; Liu X; Cao Y; Xiao R
    Stem Cells Transl Med; 2019 Jun; 8(6):606-616. PubMed ID: 30779327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hepatocyte or serum albumin protein carbonylation by oxidized fructose metabolites: Glyceraldehyde or glycolaldehyde as endogenous toxins?
    Dong Q; Yang K; Wong SM; O'Brien PJ
    Chem Biol Interact; 2010 Oct; 188(1):31-7. PubMed ID: 20561512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.