BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38063841)

  • 1. Multiscale Heterogeneous Polymer Composites for High Stiffness 4D Printed Electrically Controllable Multifunctional Structures.
    Morales Ferrer JM; Sánchez Cruz RE; Caplan S; van Rees WM; Boley JW
    Adv Mater; 2024 Feb; 36(8):e2307858. PubMed ID: 38063841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale Heterogeneous Polymer Composites for High Stiffness 4D Printed Electrically Controllable Multifunctional Structures.
    Ferrer JMM; Cruz RES; Caplan S; Van Rees WM; Boley JW
    Adv Mater; 2024 May; ():e2405505. PubMed ID: 38767502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness.
    Weng S; Kuang X; Zhang Q; Hamel CM; Roach DJ; Hu N; Jerry Qi H
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12797-12804. PubMed ID: 33355461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed liquid metal polymer composites as NIR-responsive 4D printing soft robot.
    Zhang L; Huang X; Cole T; Lu H; Hang J; Li W; Tang SY; Boyer C; Davis TP; Qiao R
    Nat Commun; 2023 Nov; 14(1):7815. PubMed ID: 38016940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-shifting structured lattices via multimaterial 4D printing.
    Boley JW; van Rees WM; Lissandrello C; Horenstein MN; Truby RL; Kotikian A; Lewis JA; Mahadevan L
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20856-20862. PubMed ID: 31578256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation.
    Cui H; Miao S; Esworthy T; Lee SJ; Zhou X; Hann SY; Webster TJ; Harris BT; Zhang LG
    Nano Res; 2019; 12():1381-1388. PubMed ID: 33312444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D-Printable Liquid Metal-Liquid Crystal Elastomer Composites.
    Ambulo CP; Ford MJ; Searles K; Majidi C; Ware TH
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12805-12813. PubMed ID: 33356119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing.
    Zhang YF; Li Z; Li H; Li H; Xiong Y; Zhu X; Lan H; Ge Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41414-41423. PubMed ID: 33779155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-Form Liquid Crystal Elastomers via Embedded 4D Printing.
    McDougall L; Herman J; Huntley E; Leguizamon S; Cook A; White T; Kaehr B; Roach DJ
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58897-58904. PubMed ID: 38084015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing.
    Peng X; Wu S; Sun X; Yue L; Montgomery SM; Demoly F; Zhou K; Zhao RR; Qi HJ
    Adv Mater; 2022 Sep; 34(39):e2204890. PubMed ID: 35962737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanoactivation of Color and Autonomous Shape Change in 3D-Printed Ionic Polymer Networks.
    Basu A; Wong J; Cao B; Boechler N; Boydston AJ; Nelson A
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19263-19270. PubMed ID: 33866782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient.
    Zhang C; Lu X; Fei G; Wang Z; Xia H; Zhao Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44774-44782. PubMed ID: 31692319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prestrain Programmable 4D Printing of Nanoceramic Composites with Bioinspired Microstructure.
    Li T; Liu Q; Qi H; Zhai W
    Small; 2022 Nov; 18(47):e2204032. PubMed ID: 36180413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D Printing of Ultrastretchable Magnetoactive Soft Material Architectures for Soft Actuators.
    Wajahat M; Kim JH; Kim JH; Jung ID; Pyo J; Seol SK
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59582-59591. PubMed ID: 38100363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origami and 4D printing of elastomer-derived ceramic structures.
    Liu G; Zhao Y; Wu G; Lu J
    Sci Adv; 2018 Aug; 4(8):eaat0641. PubMed ID: 30128354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4D Printing of Multi-Hydrogels Using Direct Ink Writing in a Supporting Viscous Liquid.
    Uchida T; Onoe H
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31262078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites.
    Wang Q; Tian X; Zhang D; Zhou Y; Yan W; Li D
    Nat Commun; 2023 Jun; 14(1):3869. PubMed ID: 37391425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4D Printed Actuators with Soft-Robotic Functions.
    López-Valdeolivas M; Liu D; Broer DJ; Sánchez-Somolinos C
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29210486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and selective actuation of 3D-printed shape-memory composites via microwave heating.
    An SC; Lim Y; Jun YC
    Sci Rep; 2023 Oct; 13(1):18179. PubMed ID: 37875586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printing of Electrically Responsive PVC Gel Actuators.
    Wang Z; Wang Y; Wang Z; He Q; Li C; Cai S
    ACS Appl Mater Interfaces; 2021 May; 13(20):24164-24172. PubMed ID: 33973764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.