BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38064046)

  • 1. Generating synthetic medical images with limited data using auxiliary classifier generative adversarial network: a study on thyroid ultrasound images.
    Atri H; Shadi M; Sargolzaei M
    J Ultrasound; 2024 Mar; 27(1):105-121. PubMed ID: 38064046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knowledge-guided synthetic medical image adversarial augmentation for ultrasonography thyroid nodule classification.
    Shi G; Wang J; Qiang Y; Yang X; Zhao J; Hao R; Yang W; Du Q; Kazihise NG
    Comput Methods Programs Biomed; 2020 Nov; 196():105611. PubMed ID: 32650266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.
    Bargsten L; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A GAN-based image synthesis method for skin lesion classification.
    Qin Z; Liu Z; Zhu P; Xue Y
    Comput Methods Programs Biomed; 2020 Oct; 195():105568. PubMed ID: 32526536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SK-Unet++: An improved Unet++ network with adaptive receptive fields for automatic segmentation of ultrasound thyroid nodule images.
    Dai H; Xie W; Xia E
    Med Phys; 2024 Mar; 51(3):1798-1811. PubMed ID: 37606374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Novel Sensor Network Structure for Classification Processing Based on the Machine Learning Method of the ACGAN.
    Chen Y; Tao J; Wang J; Chen X; Xie J; Xiong J; Yang K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MW-ACGAN: Generating Multiscale High-Resolution SAR Images for Ship Detection.
    Zou L; Zhang H; Wang C; Wu F; Gu F
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution based Nodule Localization in Thyroid Ultrasound Images through Deep Learning.
    Li J; Guo Q; Peng S; Tan X
    Curr Med Imaging; 2024; 20(1):e15734056269264. PubMed ID: 38766836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the generation of realistic synthetic petrographic datasets using a style-based GAN.
    Ferreira I; Ochoa L; Koeshidayatullah A
    Sci Rep; 2022 Jul; 12(1):12845. PubMed ID: 35902601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRA-ACGAN: A motor bearing fault diagnosis model based on an auxiliary classifier generative adversarial network and transformer network.
    Fu Z; Liu Z; Ping S; Li W; Liu J
    ISA Trans; 2024 Jun; 149():381-393. PubMed ID: 38604873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.
    Ali H; Shah Z
    JMIR Med Inform; 2022 Jun; 10(6):e37365. PubMed ID: 35709336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin Lesion Synthesis and Classification Using an Improved DCGAN Classifier.
    Behara K; Bhero E; Agee JT
    Diagnostics (Basel); 2023 Aug; 13(16):. PubMed ID: 37627894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images.
    Cronin NJ; Finni T; Seynnes O
    Comput Methods Programs Biomed; 2020 Nov; 196():105583. PubMed ID: 32544777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images.
    Zaman A; Park SH; Bang H; Park CW; Park I; Joung S
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):931-941. PubMed ID: 32399586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2S-BUSGAN: A Novel Generative Adversarial Network for Realistic Breast Ultrasound Image with Corresponding Tumor Contour Based on Small Datasets.
    Luo J; Zhang H; Zhuang Y; Han L; Chen K; Hua Z; Li C; Lin J
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis.
    Coyner AS; Chen JS; Chang K; Singh P; Ostmo S; Chan RVP; Chiang MF; Kalpathy-Cramer J; Campbell JP;
    Ophthalmol Sci; 2022 Jun; 2(2):100126. PubMed ID: 36249693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generative Adversarial Networks in Digital Histopathology: Current Applications, Limitations, Ethical Considerations, and Future Directions.
    Alajaji SA; Khoury ZH; Elgharib M; Saeed M; Ahmed ARH; Khan MB; Tavares T; Jessri M; Puche AC; Hoorfar H; Stojanov I; Sciubba JJ; Sultan AS
    Mod Pathol; 2024 Jan; 37(1):100369. PubMed ID: 37890670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast Cancer Histopathological Image Classification with Adversarial Image Synthesis.
    Gheshlaghi SH; Nok Enoch Kan C; Ye DH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3387-3390. PubMed ID: 34891966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.