These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 380641)

  • 41. Mass spectrometric sequence studies of a superoxide dismutase from Bacillus stearothermophilus.
    Auffret AD; Blake TJ; Williams DH
    Eur J Biochem; 1981 Jan; 113(2):333-8. PubMed ID: 7202415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The exchange of histidine C-2 protons in superoxide dismutases. A novel method for assigning histidine-metal ligands in proteins.
    Cass AE; Hill HA; Bannister JV; Bannister WH; Hasemann V; Johansen JT
    Biochem J; 1979 Oct; 183(1):127-32. PubMed ID: 393248
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrochemistry and electrocatalytic activities of superoxide dismutases at gold electrodes modified with a self-assembled monolayer.
    Tian Y; Mao L; Okajima T; Ohsaka T
    Anal Chem; 2004 Jul; 76(14):4162-8. PubMed ID: 15253658
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superoxide dismutase from Streptococcus mutans. Isolation and characterization of two forms of the enzyme.
    Vance PG; Keele BB; Rajagopalan KV
    J Biol Chem; 1972 Aug; 247(15):4782-6. PubMed ID: 4559499
    [No Abstract]   [Full Text] [Related]  

  • 45. The role of redox in the regulation of manganese-containing superoxide dismutase biosynthesis in Escherichia coli.
    Schiavone JR; Hassan HM
    J Biol Chem; 1988 Mar; 263(9):4269-73. PubMed ID: 3279032
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Superoxide dismutase from the Archaebacterium Thermoplasma acidophilum.
    Searcy KB; Searcy DG
    Biochim Biophys Acta; 1981 Aug; 670(1):39-46. PubMed ID: 7272329
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superoxide dismutases.
    Fridovich I
    Adv Enzymol Relat Areas Mol Biol; 1986; 58():61-97. PubMed ID: 3521218
    [No Abstract]   [Full Text] [Related]  

  • 48. Copper + zinc and manganese superoxide dismutases inhibit deoxyribose degradation by the superoxide-driven Fenton reaction at two different stages. Implications for the redox states of copper and manganese.
    Gutteridge JM; Bannister JV
    Biochem J; 1986 Feb; 234(1):225-8. PubMed ID: 3010953
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Histidine at the active site of superoxide dismutase.
    Forman HJ; Evans HJ; Hill RL; Fridovich I
    Biochemistry; 1973 Feb; 12(5):823-7. PubMed ID: 4346922
    [No Abstract]   [Full Text] [Related]  

  • 50. The effect of electron transport on the kinetics of the manganese-containing superoxide dismutase from Bacillus stearothermophilus.
    Bugrii GV; Kukhtin VV
    J Theor Biol; 1981 May; 90(2):161-7. PubMed ID: 7311574
    [No Abstract]   [Full Text] [Related]  

  • 51. Evidence that chemical modification of a positively charged residue at position 189 causes the loss of catalytic activity of iron-containing and manganese-containing superoxide dismutases.
    Chan VW; Bjerrum MJ; Borders CL
    Arch Biochem Biophys; 1990 May; 279(1):195-201. PubMed ID: 2186704
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Superoxide dismutases: studies of structure and mechanism.
    Fridovich I
    Adv Exp Med Biol; 1976; 74():530-9. PubMed ID: 134628
    [No Abstract]   [Full Text] [Related]  

  • 53. CD spectra and redox reactions of superoxide dismutase from Escherichia coli B: evidence for a Mn(III) enzyme.
    Keele BB; Giovagnoli C; Rotilio G
    Physiol Chem Phys; 1975; 7(1):1-6. PubMed ID: 165558
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coulometric and potentiometric evaluation of the redox components of cytochrome c oxidase in situ.
    Wilson DF; Nelson D
    Biochim Biophys Acta; 1982 Jun; 680(3):233-41. PubMed ID: 6285964
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distinguishing between Mn-containing and Fe-containing superoxide dismutases in crude extracts of cells.
    Kirby T; Blum J; Kahane I; Fridovich I
    Arch Biochem Biophys; 1980 May; 201(2):551-5. PubMed ID: 6994652
    [No Abstract]   [Full Text] [Related]  

  • 56. Anion binding to the four-copper form of bovine erythrocyte superoxide dismutase: Mechanistic implications.
    Strothkamp KG; Lippard SJ
    Biochemistry; 1981 Dec; 20(26):7488-93. PubMed ID: 7326242
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binding of a single zinc ion to one subunit of copper-zinc superoxide dismutase apoprotein substantially influences the structure and stability of the entire homodimeric protein.
    Potter SZ; Zhu H; Shaw BF; Rodriguez JA; Doucette PA; Sohn SH; Durazo A; Faull KF; Gralla EB; Nersissian AM; Valentine JS
    J Am Chem Soc; 2007 Apr; 129(15):4575-83. PubMed ID: 17381088
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quenching of bathocuproine disulfonate fluorescence by Cu(I) as a basis for copper quantification.
    Rapisarda VA; Volentini SI; Farías RN; Massa EM
    Anal Biochem; 2002 Aug; 307(1):105-9. PubMed ID: 12137786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective inhibition of Fe- versus Cu/Zn-superoxide dismutases by 2,3-dihydroxybenzoic acid derivatives.
    Soulère L; Viodé C; Périé J; Hoffmann P
    Chem Pharm Bull (Tokyo); 2002 May; 50(5):578-82. PubMed ID: 12036008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Superoxide dismutase. Organelle specificity.
    Weisiger RA; Fridovich I
    J Biol Chem; 1973 May; 248(10):3582-92. PubMed ID: 4702877
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.