These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38064282)

  • 1. Advanced Electrode Technologies for Noninvasive Brain-Computer Interfaces.
    Lin S; Jiang J; Huang K; Li L; He X; Du P; Wu Y; Liu J; Li X; Huang Z; Zhou Z; Yu Y; Gao J; Lei M; Wu H
    ACS Nano; 2023 Dec; 17(24):24487-24513. PubMed ID: 38064282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces.
    Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014
    [No Abstract]   [Full Text] [Related]  

  • 3. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain-Computer Interfaces: A Systematic Literature Review.
    Jamil N; Belkacem AN; Ouhbi S; Lakas A
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Flexible, Robust, and Gel-Free Electroencephalogram Electrode for Noninvasive Brain-Computer Interfaces.
    Lin S; Liu J; Li W; Wang D; Huang Y; Jia C; Li Z; Murtaza M; Wang H; Song J; Liu Z; Huang K; Zu D; Lei M; Hong B; Wu H
    Nano Lett; 2019 Oct; 19(10):6853-6861. PubMed ID: 31454250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-Based Brain-Computer Interfaces.
    Wang Y; Nakanishi M; Zhang D
    Adv Exp Med Biol; 2019; 1101():41-65. PubMed ID: 31729671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges.
    Yadav D; Yadav S; Veer K
    J Neurosci Methods; 2020 Dec; 346():108918. PubMed ID: 32853592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the Usability of Brain-Computer Interface Systems.
    Baek HJ; Chang MH; Heo J; Park KS
    Comput Intell Neurosci; 2019; 2019():5427154. PubMed ID: 31316556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface.
    Li J; Cheng Y; Gu M; Yang Z; Zhan L; Du Z
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-speed brain-computer interface (BCI) using dry EEG electrodes.
    Spüler M
    PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dry electroencephalogram electrode for applications in steady-state visual evoked potential-based brain-computer interface systems.
    Li P; Yin C; Li M; Li H; Yang B
    Biosens Bioelectron; 2021 Sep; 187():113326. PubMed ID: 34004544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel semi-dry electrodes for brain-computer interface applications.
    Wang F; Li G; Chen J; Duan Y; Zhang D
    J Neural Eng; 2016 Aug; 13(4):046021. PubMed ID: 27378253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the Usability of Alternative EEG Devices to Traditional Electrode Caps for SSVEP-BCI Controlled Assistive Robots.
    Cardoso ASS; Andreasen Struijk LNS; Kaeseler RL; Jochumsen M
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition.
    Xue H; Wang D; Jin M; Gao H; Wang X; Xia L; Li D; Sun K; Wang H; Dong X; Zhang C; Cong F; Lin J
    Microsyst Nanoeng; 2023; 9():79. PubMed ID: 37313471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of brain-computer interfaces in neurodegenerative diseases.
    Tayebi H; Azadnajafabad S; Maroufi SF; Pour-Rashidi A; Khorasanizadeh M; Faramarzi S; Slavin KV
    Neurosurg Rev; 2023 May; 46(1):131. PubMed ID: 37256332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human visual skills for brain-computer interface use: a tutorial.
    Fried-Oken M; Kinsella M; Peters B; Eddy B; Wojciechowski B
    Disabil Rehabil Assist Technol; 2020 Oct; 15(7):799-809. PubMed ID: 32476516
    [No Abstract]   [Full Text] [Related]  

  • 19. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites.
    Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q
    J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards clinical application of implantable brain-computer interfaces for people with late-stage ALS: medical and ethical considerations.
    Vansteensel MJ; Klein E; van Thiel G; Gaytant M; Simmons Z; Wolpaw JR; Vaughan TM
    J Neurol; 2023 Mar; 270(3):1323-1336. PubMed ID: 36450968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.