These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 380644)
1. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Davanloo P; Sprinzl M; Cramer F Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644 [TBL] [Abstract][Full Text] [Related]
2. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence. Okabe N; Cramer F J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259 [TBL] [Abstract][Full Text] [Related]
3. [Binding of the yeast phenylalanine tRNA with Escherichia coli ribosomes. Effect of the removal of a modified base from the 3'-end of the anticodon on codon-anticodon interaction]. Katunin VI; Kirillov SV Mol Biol (Mosk); 1984; 18(6):1486-96. PubMed ID: 6084167 [TBL] [Abstract][Full Text] [Related]
4. High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids. Gorenstein DG; Goldfield EM Mol Cell Biochem; 1982 Jul; 46(2):97-120. PubMed ID: 6180293 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic conversion of guanosine 3' adjacent to the anticodon of yeast tRNAPhe to N1-methylguanosine and the wye nucleoside: dependence on the anticodon sequence. Droogmans L; Grosjean H EMBO J; 1987 Feb; 6(2):477-83. PubMed ID: 3556165 [TBL] [Abstract][Full Text] [Related]
6. A novel conformational change of the anticodon region of tRNAPhe (yeast). Urbanke C; Maass G Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565 [TBL] [Abstract][Full Text] [Related]
7. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745 [TBL] [Abstract][Full Text] [Related]
8. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop. Gorenstein DG; Goldfield EM Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140 [TBL] [Abstract][Full Text] [Related]
9. Nuclear magnetic resonance studies on the tertiary folding of transfer ribonucleic acid: assignment of the 7-methylguanosine resonance. Hurd RE; Reid BR Biochemistry; 1979 Sep; 18(18):4017-24. PubMed ID: 385042 [TBL] [Abstract][Full Text] [Related]
10. A nuclear magnetic resonance study of secondary and tertiary structure in yeast tRNAPhe. Robillard GT; Tarr CE; Vosman F; Reid BR Biochemistry; 1977 Nov; 16(24):5261-73. PubMed ID: 336084 [TBL] [Abstract][Full Text] [Related]
11. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz. Heerschap A; Haasnoot CA; Hilbers CW Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268 [TBL] [Abstract][Full Text] [Related]
12. Nuclear magnetic resonance studies of codon-anticodon interaction in tRNAPhe. I. Effect of binding complementary tetra and pentanucleotides to the anticodon. Geerdes HA; Van Boom JH; Hilbers CW J Mol Biol; 1980 Sep; 142(2):195-217. PubMed ID: 6160254 [No Abstract] [Full Text] [Related]
13. Fluorescence detected circular dichroism study of the anticodon loop of yeast tRNAPhe. Turner DH; Tinoco I; Maestre MF Biochemistry; 1975 Aug; 14(17):3794-9. PubMed ID: 1100099 [TBL] [Abstract][Full Text] [Related]
14. Interactions of yeast tRNAPhe with ribosomes from yeast and Escherichia coli. A fluorescence spectroscopic study. Robertson JM; Kahan M; Wintermeyer W; Zachau HG Eur J Biochem; 1977 Jan; 72(1):117-25. PubMed ID: 318996 [TBL] [Abstract][Full Text] [Related]
15. Identification of tertiary base pair resonances in the nuclear magnetic resonance spectra of transfer ribonucleic acid. Reid BR; McCollum L; Ribeiro NS; Abbate J; Hurd RE Biochemistry; 1979 Sep; 18(18):3996-4005. PubMed ID: 385039 [TBL] [Abstract][Full Text] [Related]
16. Studies of yeast phenylalanine-accepting transfer ribonucleic acid backbone structure in solution by phosphorus-31 nuclear magnetic resonance spectroscopy. Salemink PJ; Swarthof T; Hilbers CW Biochemistry; 1979 Aug; 18(16):3477-85. PubMed ID: 383144 [TBL] [Abstract][Full Text] [Related]
17. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe. Johnston PD; Redfield AG Nucleic Acids Res; 1977 Oct; 4(10):3599-615. PubMed ID: 337239 [TBL] [Abstract][Full Text] [Related]
18. Effect of the removal of the Y base on the conformation of yeast tRNA. Kearns DR; Wong KL; Wong YP Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3843-6. PubMed ID: 4590172 [TBL] [Abstract][Full Text] [Related]
20. Codon-anticodon interaction in tRNAPhe. II. A nuclear magnetic resonance study of the binding of the codon UUC. Geerdes HA; Van Boom JH; Hilbers CW J Mol Biol; 1980 Sep; 142(2):219-30. PubMed ID: 7003160 [No Abstract] [Full Text] [Related] [Next] [New Search]