BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38064481)

  • 1. Tracheomalacia Reduces Aerosolized Drug Delivery to the Lung.
    Gunatilaka CC; McKenzie C; Hysinger EB; Xiao Q; Higano NS; Woods JC; Bates AJ
    J Aerosol Med Pulm Drug Deliv; 2024 Feb; 37(1):19-29. PubMed ID: 38064481
    [No Abstract]   [Full Text] [Related]  

  • 2. Increased Work of Breathing due to Tracheomalacia in Neonates.
    Gunatilaka CC; Higano NS; Hysinger EB; Gandhi DB; Fleck RJ; Hahn AD; Fain SB; Woods JC; Bates AJ
    Ann Am Thorac Soc; 2020 Oct; 17(10):1247-1256. PubMed ID: 32579852
    [No Abstract]   [Full Text] [Related]  

  • 3. Quantitative Assessment of Regional Dynamic Airway Collapse in Neonates via Retrospectively Respiratory-Gated
    Bates AJ; Higano NS; Hysinger EB; Fleck RJ; Hahn AD; Fain SB; Kingma PS; Woods JC
    J Magn Reson Imaging; 2019 Mar; 49(3):659-667. PubMed ID: 30252988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting tracheal work of breathing in neonates based on radiological and pulmonary measurements.
    Gunatilaka CC; Hysinger EB; Schuh A; Xiao Q; Gandhi DB; Higano NS; Ignatiuk D; Hossain MM; Fleck RJ; Woods JC; Bates AJ
    J Appl Physiol (1985); 2022 Oct; 133(4):893-901. PubMed ID: 36049059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonates With Tracheomalacia Generate Auto-Positive End-Expiratory Pressure via Glottis Closure.
    Gunatilaka CC; Hysinger EB; Schuh A; Gandhi DB; Higano NS; Xiao Q; Hahn AD; Fain SB; Fleck RJ; Woods JC; Bates AJ
    Chest; 2021 Dec; 160(6):2168-2177. PubMed ID: 34157310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrashort Echo-Time MRI for the Assessment of Tracheomalacia in Neonates.
    Hysinger EB; Bates AJ; Higano NS; Benscoter D; Fleck RJ; Hart CK; Burg G; De Alarcon A; Kingma PS; Woods JC
    Chest; 2020 Mar; 157(3):595-602. PubMed ID: 31862439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substance deposition assessment in obstructed pulmonary system through numerical characterization of airflow and inhaled particles attributes.
    Lalas A; Nousias S; Kikidis D; Lalos A; Arvanitis G; Sougles C; Moustakas K; Votis K; Verbanck S; Usmani O; Tzovaras D
    BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):173. PubMed ID: 29297393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhaled Aerosol Distribution in Human Airways: A Scintigraphy-Guided Study in a 3D Printed Model.
    Verbanck S; Ghorbaniasl G; Biddiscombe MF; Dragojlovic D; Ricks N; Lacor C; Ilsen B; de Mey J; Schuermans D; Underwood SR; Barnes PJ; Vincken W; Usmani OS
    J Aerosol Med Pulm Drug Deliv; 2016 Dec; 29(6):525-533. PubMed ID: 27337643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deposition of Aerosolized Lucinactant in Nonhuman Primates.
    Gregory TJ; Irshad H; Chand R; Kuehl PJ
    J Aerosol Med Pulm Drug Deliv; 2020 Feb; 33(1):21-33. PubMed ID: 31436493
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow.
    Gunatilaka CC; Schuh A; Higano NS; Woods JC; Bates AJ
    Comput Biol Med; 2020 Dec; 127():104099. PubMed ID: 33152667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of airway instability and collapse in tracheomalacia.
    Hollister SJ; Hollister MP; Hollister SK
    Respir Res; 2017 Apr; 18(1):62. PubMed ID: 28424075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-specific modeling of aerosol delivery in healthy and asthmatic adults.
    Poorbahrami K; Mummy DG; Fain SB; Oakes JM
    J Appl Physiol (1985); 2019 Dec; 127(6):1720-1732. PubMed ID: 31513445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted aerosolized delivery of ascorbate in the lungs of chlorine-exposed rats.
    Bracher A; Doran SF; Squadrito GL; Postlethwait EM; Bowen L; Matalon S
    J Aerosol Med Pulm Drug Deliv; 2012 Dec; 25(6):333-41. PubMed ID: 22393907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting aerosolized drugs to the conducting airways using very large particles and extremely slow inhalations.
    Zeman KL; Wu J; Bennett WD
    J Aerosol Med Pulm Drug Deliv; 2010 Dec; 23(6):363-9. PubMed ID: 20863250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico evaluation of particle transport and deposition in the airways of individual patients with chronic obstructive pulmonary disease.
    Kadota K; Matsumoto K; Uchiyama H; Tobita S; Maeda M; Maki D; Kinehara Y; Tachibana I; Sosnowski TR; Tozuka Y
    Eur J Pharm Biopharm; 2022 May; 174():10-19. PubMed ID: 35351571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Special problems in aerosol delivery: neonatal and pediatric considerations.
    Cole CH
    Respir Care; 2000 Jun; 45(6):646-51. PubMed ID: 10894457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.
    Kolanjiyil AV; Kleinstreuer C; Sadikot RT
    Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Models of Inhalation Therapy in Early Childhood: Therapeutic Aerosols in the Developing Acinus.
    Katan JT; Hofemeier P; Sznitman J
    J Aerosol Med Pulm Drug Deliv; 2016 Jun; 29(3):288-98. PubMed ID: 26907858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air and soul: the science and application of aerosol therapy.
    Rubin BK
    Respir Care; 2010 Jul; 55(7):911-21. PubMed ID: 20587104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.